People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sinatra, Lutfan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022One Hundred-Nanometer-Sized CsPbBr3/m-SiO2 Composites Prepared via Molten-Salts Synthesis are Optimal Green Phosphors for LCD Display Devicescitations
- 2018Synthesis and characterization of branched fcc/hcp ruthenium nanostructures and their catalytic activity in ammonia borane hydrolysiscitations
- 2018Ligand-Free Nanocrystals of Highly Emissive Cs4PbBr6 Perovskitecitations
- 2016Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystalscitations
- 2016Synthesis and Optical Properties of a Dithiolate/Phosphine-Protected Au28 Nanoclustercitations
- 2013Gold nanoparticle growth control - Implementing novel wet chemistry method on silicon substratecitations
Places of action
Organizations | Location | People |
---|
article
Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals
Abstract
Controllable doping of semiconductors is a fundamental technological requirement for electronic and optoelectronic devices. As intrinsic semiconductors, hybrid perovskites have so far been a phenomenal success in photovoltaics. The inability to dope these materials heterovalently (or aliovalently) has greatly limited their wider utilizations in electronics. Here we show an efficient in situ chemical route that achieves the controlled incorporation of trivalent cations (Bi3+, Au3+, or In3+) by exploiting the retrograde solubility behavior of perovskites. We term the new method dopant incorporation in the retrograde regime. We achieve Bi3+ incorporation that leads to bandgap tuning (∼300 meV), 104 fold enhancement in electrical conductivity, and a change in the sign of majority charge carriers from positive to negative. This work demonstrates the successful incorporation of dopants into perovskite crystals while preserving the host lattice structure, opening new avenues to tailor the electronic and optoelectronic properties of this rapidly emerging class of solution-processed semiconductors. © 2016 American Chemical Society.