People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gutiérrez, Rafael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Computational Design of the Electronic Response for Volatile Organic Compounds Interacting with Doped Graphene Substrates
- 2022Magnetoresistive Single-Molecule Junctionscitations
- 2021Predicting Neuropsychological Impairment in Relapsing Remitting Multiple Sclerosis: The Role of Clinical Measures, Treatment, and Neuropsychiatry Symptomscitations
- 2020Interactions of Long-Chain Polyamines with Silica Studied by Molecular Dynamics Simulations and Solid-State NMR Spectroscopycitations
- 2020Towards synthetic neural networkscitations
- 2019Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniquescitations
- 2019Direct Assembly and Metal-Ion Binding Properties of Oxytocin Monolayer on Gold Surfacescitations
- 2019Doping engineering of thermoelectric transport in BNC heteronanotubescitations
- 2019Thermal bridging of graphene nanosheets via covalent molecular junctionscitations
- 2018Chirality-dependent electron spin filtering by molecular monolayers of helicenescitations
- 2017In-Situ Stretching Patterned Graphene Nanoribbons in the Transmission Electron Microscopecitations
- 2015Switchable Negative Differential Resistance Induced by Quantum Interference Effects in Porphyrin-based Molecular Junctionscitations
- 2010Structural stability versus conformational sampling in biomolecular systems: Why is the charge transfer efficiency in G4-DNA better than in double-stranded DNA?citations
- 2009Combined density functional theory and Landauer approach for hole transfer in DNA along classical molecular dynamics trajectoriescitations
- 2007Tuning the conductance of a molecular switchcitations
- 2003Conductance of a molecular junction mediated by unconventional metal-induced gap statescitations
Places of action
Organizations | Location | People |
---|
article
Switchable Negative Differential Resistance Induced by Quantum Interference Effects in Porphyrin-based Molecular Junctions
Abstract
<p>Charge transport signatures of a carbon-based molecular switch consisting of different tautomers of metal-free porphyrin embedded between graphene nanoribbons is studied by combining electronic structure and nonequilibrium transport. Different low-energy and low-bias features are revealed, including negative differential resistance (NDR) and antiresonances, both mediated by subtle quantum interference effects. Moreover, the molecular junctions can display moderate rectifying or nonlinear behavior depending on the position of the hydrogen atoms within the porphyrin core. We rationalize the mechanism leading to NDR and antiresonances by providing a detailed analysis of transmission pathways and frontier molecular orbital distribution.</p>