People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vähänissi, Ville
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (43/43 displayed)
- 2024(invited talk) Sulfur-hyperdoped silicon by ultrashort laser processing
- 2024Contactless analysis of surface passivation and charge transfer at the TiO 2-Si interfacecitations
- 2024Contactless analysis of surface passivation and charge transfer at the TiO 2-Si interfacecitations
- 2024Impact of post-ion implantation annealing on Se-hyperdoped Gecitations
- 2024Impact of post-ion implantation annealing on Se-hyperdoped Gecitations
- 2024Bridging the gap between surface physics and photonicscitations
- 2024Contactless analysis of surface passivation and charge transfer at the TiO2-Si interfacecitations
- 2024(poster) ALD SiO2 provides efficient Ge surface passivation with a tailorable charge polarity
- 2024(poster) ALD SiO2 provides efficient Ge surface passivation with a tailorable charge polarity
- 2023Surface passivation of Germanium with ALD Al2O3: Impact of Composition and Crystallinity of GeOx Interlayercitations
- 2023(oral talk) Effective carrier lifetime in ultrashort pulse laser hyperdoped silicon: dopant concentration dependence and practical upper limits
- 2023Excellent Responsivity and Low Dark Current Obtained with Metal-Assisted Chemical Etched Si Photodiodecitations
- 2023Comparison of SiNx-based Surface Passivation Between Germanium and Siliconcitations
- 2023Plasma-enhanced atomic layer deposited SiO2 enables positive thin film charge and surface recombination velocity of 1.3 cm/s on germaniumcitations
- 2023Chemical Excitation of Silicon Photoconductors by Metal-Assisted Chemical Etchingcitations
- 2023Chemical Excitation of Silicon Photoconductors by Metal-Assisted Chemical Etchingcitations
- 2023Status report on emerging photovoltaicscitations
- 2023Atomic Layer Deposition of Titanium Oxide-Based Films for Semiconductor Applications–Effects of Precursor and Operating Conditionscitations
- 2023Quantifying the Impact of Al Deposition Method on Underlying Al2O3/Si Interface Qualitycitations
- 2023Is Carrier Mobility a Limiting Factor for Charge Transfer in Tio2/Si Devices? A Study by Transient Reflectance Spectroscopycitations
- 2022Electron Injection in Metal Assisted Chemical Etching as a Fundamental Mechanism for Electroless Electricity Generationcitations
- 2022Electron Injection in Metal Assisted Chemical Etching as a Fundamental Mechanism for Electroless Electricity Generationcitations
- 2022Perspectives on Black Silicon in Semiconductor Manufacturing: Experimental Comparison of Plasma Etching, MACE and Fs-Laser Etchingcitations
- 2022Millisecond-Level Minority Carrier Lifetime in Femtosecond Laser-Textured Black Siliconcitations
- 2022(oral talk) Compatibility of Al-neal in processing of Si devices with Al2O3 layer
- 2021Efficient photon capture on germanium surfaces using industrially feasible nanostructure formationcitations
- 2021Al-neal Degrades Al2O3 Passivation of Silicon Surfacecitations
- 2020Modeling Field-effect in Black Silicon and its Impact on Device Performancecitations
- 2020Impact of doping and silicon substrate resistivity on the blistering of atomic-layer-deposited aluminium oxidecitations
- 2019Effect of MACE Parameters on Electrical and Optical Properties of ALD Passivated Black Siliconcitations
- 2019Compatibility of 3-D Printed Devices in Cleanroom Environments for Semiconductor Processingcitations
- 2019Compatibility of 3-D Printed Devices in Cleanroom Environments for Semiconductor Processingcitations
- 2019Passivation of Detector‐Grade FZ‐Si with ALD‐Grown Aluminium Oxidecitations
- 2018Elucidation of Iron Gettering Mechanisms in Boron-Implanted Silicon Solar Cellscitations
- 2018Rapid thermal anneal activates light induced degradation due to copper redistributioncitations
- 2017Electronic Quality Improvement of Highly Defective Quasi-Mono Silicon Material by Phosphorus Diffusion Getteringcitations
- 2017Toward Effective Gettering in Boron-Implanted Silicon Solar Cellscitations
- 2017Full recovery of red zone in p-type high-performance multicrystalline siliconcitations
- 2017Surface passivation of black silicon phosphorus emitters with atomic layer deposited SiO2/Al2O3 stackscitations
- 2016Finite- vs. infinite-source emitters in silicon photovoltaicscitations
- 2014Iron Precipitation upon Gettering in Phosphorus-Implanted Czochralski Silicon and its Impact on Solar Cell Performancecitations
- 2013Passivation of black silicon boron emitters with atomic layer deposited aluminum oxidecitations
- 2008Metallization of Polymer Substrates for Flexible Electronics
Places of action
Organizations | Location | People |
---|
article
Electron Injection in Metal Assisted Chemical Etching as a Fundamental Mechanism for Electroless Electricity Generation
Abstract
<p>Metal-assisted chemical etching (MACE) is a widely applied process for fabricating Si nanostructures. As an electroless process, it does not require a counter electrode, and it is usually considered that only holes in the Si valence band contribute to the process. In this work, a charge carrier collecting p-n junction structure coated with silver nanoparticles is used to demonstrate that also electrons in the conduction band play a fundamental role in MACE, and enable an electroless chemical energy conversion process that was not previously reported. The studied structures generate electricity at a power density of 0.43 mW/cm2 during MACE. This necessitates reformulating the microscopic electrochemical description of the Si-metal-oxidant nanosystems to separately account for electron and hole injections into the conduction and valence band of Si. Our work provides new insight into the fundamentals of MACE and demonstrates a radically new route to chemical energy conversion by solar cell-inspired devices.</p>