People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Motti, Silvia Genaro
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024The role of chemical composition in determining the charge-carrier dynamics in (AgI)x(BiI3)yrudorffitescitations
- 2024Disentangling the effects of structure and lone-pair electrons in the lattice dynamics of halide perovskitescitations
- 2024Unraveling loss mechanisms arising from energy‐level misalignment between metal halide perovskites and hole transport layerscitations
- 2022Optoelectronic properties of mixed iodide−bromide perovskites from first-principles computational modeling and experimentcitations
- 2022Excellent long-range charge-carrier mobility in 2D perovskitescitations
- 2020CsPbBr3 nanocrystal films: deviations from bulk vibrational and optoelectronic propertiescitations
- 2019Controlling competing photochemical reactions stabilizes perovskite solar cellscitations
- 2019Defect activity in lead halide perovskitescitations
- 2018Iodine chemistry determines the defect tolerance of lead-halide perovskitescitations
- 2018Probing device degradation and electric fields in polymeric field-effect transistors by SFG vibrational spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
Optoelectronic properties of mixed iodide−bromide perovskites from first-principles computational modeling and experiment
Abstract
Halogen mixing in lead-halide perovskites is an effective route for tuning the band gap in light emission and multijunction solar cell applications. Here we report the effect of halogen mixing on the optoelectronic properties of lead-halide perovskites from theory and experiment. We applied the virtual crystal approximation within density functional theory, the GW approximation, and the Bethe−Salpeter equation to calculate structural, vibrational, and optoelectronic properties for a series of mixed halide perovskites. We separately perform spectroscopic measurements of these properties and analyze the impact of halogen mixing on quasiparticle band gaps, effective masses, absorption coefficients, charge-carrier mobilities, and exciton binding energies. Our joint theoretical−experimental study demonstrates that iodide−bromide mixed-halide perovskites can be modeled as homovalent alloys, and local structural distortions do not play a significant role for the properties of these mixed species. Our study outlines a general theoretical−experimental framework for future investigations of novel chemically mixed systems.