People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reinhard, Marco
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Observation of a Picosecond Light-Induced Spin Transition in Polymeric Nanorods.citations
- 2023Ferricyanide photo-aquation pathway revealed by combined femtosecond Kβ main line and valence-to-core x-ray emission spectroscopycitations
- 2023Ferricyanide photo-aquation pathway revealed by combined femtosecond Kβ main line and valence-to-core x-ray emission spectroscopy.citations
- 2022Femtosecond X-ray Spectroscopy Directly Quantifies Transient Excited-State Mixed Valency.citations
- 2020Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering.citations
- 2020Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering.citations
- 2020Excited state charge distribution and bond expansion of ferrous complexes observed with femtosecond valence-to-core x-ray emission spectroscopy.citations
- 2019Hot Branching Dynamics in a Light-Harvesting Iron Carbene Complex Revealed by Ultrafast X-ray Emission Spectroscopy.citations
Places of action
Organizations | Location | People |
---|
article
Femtosecond X-ray Spectroscopy Directly Quantifies Transient Excited-State Mixed Valency.
Abstract
Quantifying charge delocalization associated with short-lived photoexcited states of molecular complexes in solution remains experimentally challenging, requiring local element specific femtosecond experimental probes of time-evolving electron transfer. In this study, we quantify the evolving valence hole charge distribution in the photoexcited charge transfer state of a prototypical mixed valence bimetallic iron-ruthenium complex, [(CN)5FeIICNRuIII(NH3)5]-, in water by combining femtosecond X-ray spectroscopy measurements with time-dependent density functional theory calculations of the excited-state dynamics. We estimate the valence hole charge that accumulated at the Fe atom to be 0.6 ± 0.2, resulting from excited-state metal-to-metal charge transfer, on an 60 fs time scale. Our combined experimental and computational approach provides a spectroscopic ruler for quantifying excited-state valency in solvated complexes.