Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Duin, Adri C. T. Van

  • Google
  • 6
  • 40
  • 422

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2023Effect of Fe–O ReaxFF on Liquid Iron Oxide Properties Derived from Reactive Molecular Dynamics12citations
  • 2022Oxidation and hydrogenation of monolayer MoS2 with compositing agent under environmental exposure: The ReaxFF Mo/Ti/Au/O/S/H force field development and applications13citations
  • 2022What Happens at Surfaces and Grain Boundaries of Halide Perovskites33citations
  • 2021Atomistic Insights Into the Degradation of Inorganic Halide Perovskite CsPbI349citations
  • 2020Comparing hydrothermal sintering and cold sintering process: Mechanisms, microstructure, kinetics and chemistry95citations
  • 2017cemff220citations

Places of action

Chart of shared publication
Kritikos, Efstratios M.
1 / 1 shared
Giusti, Andrea
1 / 3 shared
Van Ende, Marie-Aline
1 / 8 shared
Thijs, Leon C.
1 / 5 shared
Nayir, Nadire
1 / 1 shared
Kowalik, Malgorzata
1 / 3 shared
Chandross, Michael
1 / 4 shared
Zhang, Yuwei
1 / 1 shared
Mao, Qian
1 / 1 shared
Hilpert, Tobias
1 / 2 shared
Pols, Mike
2 / 6 shared
Filot, Ivo
2 / 3 shared
Calero, Sofía
1 / 34 shared
Tao, Shuxia
2 / 35 shared
Vicent-Luna, José Manuel
1 / 12 shared
Randall, Clive
1 / 8 shared
Elissalde, Catherine
1 / 79 shared
Sengul, Mert
1 / 1 shared
Tsuji, Kosuke
1 / 4 shared
Denux, Dominique
1 / 13 shared
Thibaud, Jean-Marc
1 / 2 shared
Goglio, Graziella
1 / 34 shared
Bang, Sun Hwi
1 / 3 shared
Ndayishimiye, Arnaud
1 / 10 shared
Takashima, Kenji
1 / 2 shared
Beauvoir, Thomas Hérisson De
1 / 8 shared
Parker, Stephen C.
1 / 33 shared
Geissbühler, David
1 / 3 shared
Heinz, Hendrik
1 / 4 shared
Manzano, Hegoi
1 / 7 shared
Bowen, Paul
1 / 19 shared
Flatt, Robert J.
1 / 9 shared
Jamil, Tariq
1 / 6 shared
Mohamed, Aslam Kunhi
1 / 5 shared
Pellenq, Roland
1 / 4 shared
Shahsavari, Rouzbeh
1 / 4 shared
Galmarini, Sandra
1 / 8 shared
Kalinichev, Andrey G.
1 / 16 shared
Mishra, Ratan K.
1 / 2 shared
Tao, Lei
1 / 3 shared
Chart of publication period
2023
2022
2021
2020
2017

Co-Authors (by relevance)

  • Kritikos, Efstratios M.
  • Giusti, Andrea
  • Van Ende, Marie-Aline
  • Thijs, Leon C.
  • Nayir, Nadire
  • Kowalik, Malgorzata
  • Chandross, Michael
  • Zhang, Yuwei
  • Mao, Qian
  • Hilpert, Tobias
  • Pols, Mike
  • Filot, Ivo
  • Calero, Sofía
  • Tao, Shuxia
  • Vicent-Luna, José Manuel
  • Randall, Clive
  • Elissalde, Catherine
  • Sengul, Mert
  • Tsuji, Kosuke
  • Denux, Dominique
  • Thibaud, Jean-Marc
  • Goglio, Graziella
  • Bang, Sun Hwi
  • Ndayishimiye, Arnaud
  • Takashima, Kenji
  • Beauvoir, Thomas Hérisson De
  • Parker, Stephen C.
  • Geissbühler, David
  • Heinz, Hendrik
  • Manzano, Hegoi
  • Bowen, Paul
  • Flatt, Robert J.
  • Jamil, Tariq
  • Mohamed, Aslam Kunhi
  • Pellenq, Roland
  • Shahsavari, Rouzbeh
  • Galmarini, Sandra
  • Kalinichev, Andrey G.
  • Mishra, Ratan K.
  • Tao, Lei
OrganizationsLocationPeople

article

Atomistic Insights Into the Degradation of Inorganic Halide Perovskite CsPbI3

  • Pols, Mike
  • Filot, Ivo
  • Duin, Adri C. T. Van
  • Tao, Shuxia
  • Vicent-Luna, José Manuel
Abstract

<p>Halide perovskites make efficient solar cells but suffer from several stability issues. The characterization of these degradation processes is challenging because of the limited spatiotemporal resolution in experiments and the absence of efficient computational methods to study these reactive processes. Here, we present the first reactive force field for molecular dynamics simulations of the phase instability and the defect-induced degradation in CsPbI3. We find that the phase transitions are driven by the anharmonic fluctuations of the atoms in the perovskite lattice. At low temperatures, the Cs cations tend to move away from their preferential positions, resulting in worse contacts with the surrounding metal halide framework which initiates the conversion to a nonperovskite phase. Moreover, our simulations of defective structures reveal that, although both iodine vacancies and interstitials are mobile in the perovskite lattice, the vacancies have a detrimental effect on the stability, leading to the decomposition of perovskites to PbI2.</p>

Topics
  • perovskite
  • impedance spectroscopy
  • phase
  • experiment
  • simulation
  • reactive
  • molecular dynamics
  • phase transition
  • interstitial
  • decomposition