Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yang, Q.

  • Google
  • 7
  • 37
  • 117

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2021The influence of Fe variations on the phase stability of CrMnFe x CoNi alloys following long-duration exposures at intermediate temperaturescitations
  • 2021The influence of Fe variations on the phase stability of CrMnFexCoNi alloys following long-duration exposures at intermediate temperaturescitations
  • 2019Mechanical properties of polymer-derived ceramics modified by active nanoparticlescitations
  • 2019Atom probe tomography of Au-Cu bimetallic nanoparticles synthesized by inert gas condensation9citations
  • 2007An efficient hybrid, nanostructured, epoxidation catalyst: titanium silsesquioxane-polystyrene copolymer supported on SBA-15citations
  • 2007An efficient hybrid, nanostructured, epoxidation catalyst: titanium silsesquioxane-polystyrene copolymer supported on SBA-1554citations
  • 2007An efficient hybrid, nanostructured, epoxidation catalyst: titanium silsesquioxane-polystyrene copolymer supported on SBA-1554citations

Places of action

Chart of shared publication
Hang, M.
2 / 2 shared
Bloomfield, Me
1 / 3 shared
Christofidou, Ka
1 / 13 shared
Jones, Ng
1 / 47 shared
Monni, F.
2 / 4 shared
Jones, N. G.
1 / 29 shared
Christofidou, K. A.
1 / 17 shared
Bloomfield, M. E.
1 / 3 shared
Ashrafi, B.
1 / 4 shared
Sarvestani, H. Yazdani
1 / 3 shared
Jakubinek, M. B.
1 / 1 shared
Danaie, M.
1 / 5 shared
Martin, Tomas L.
1 / 38 shared
Joyce, D. E.
1 / 1 shared
Bagot, P. A. J.
1 / 12 shared
Marceau, E.
1 / 4 shared
Moody, M. P.
1 / 19 shared
Broadley, V.
1 / 1 shared
Young, N.
1 / 7 shared
Magusin, Pcmm Pieter
1 / 5 shared
Abbenhuis, Hcl Erik
1 / 3 shared
Han, W. Wei
1 / 1 shared
Mezari, B. Brahim
1 / 2 shared
Ní Bhriain, Nm
1 / 1 shared
Gerritsen, G. Gijsbert
1 / 1 shared
Zhang, Lei
3 / 14 shared
Li, Can
3 / 7 shared
Santen, Ra Rutger Van
1 / 6 shared
Magusin, P. C. M. M.
2 / 10 shared
Gerritsen, G.
2 / 3 shared
Han, W.
2 / 4 shared
Abbenhuis, H. C. L.
2 / 9 shared
Bhriain, N. M. Ní
1 / 1 shared
Mezari, B.
2 / 4 shared
Van Santen, Rutger
1 / 16 shared
Ní Bhriain, N. M.
1 / 1 shared
Santen, Van, R. A.
1 / 10 shared
Chart of publication period
2021
2019
2007

Co-Authors (by relevance)

  • Hang, M.
  • Bloomfield, Me
  • Christofidou, Ka
  • Jones, Ng
  • Monni, F.
  • Jones, N. G.
  • Christofidou, K. A.
  • Bloomfield, M. E.
  • Ashrafi, B.
  • Sarvestani, H. Yazdani
  • Jakubinek, M. B.
  • Danaie, M.
  • Martin, Tomas L.
  • Joyce, D. E.
  • Bagot, P. A. J.
  • Marceau, E.
  • Moody, M. P.
  • Broadley, V.
  • Young, N.
  • Magusin, Pcmm Pieter
  • Abbenhuis, Hcl Erik
  • Han, W. Wei
  • Mezari, B. Brahim
  • Ní Bhriain, Nm
  • Gerritsen, G. Gijsbert
  • Zhang, Lei
  • Li, Can
  • Santen, Ra Rutger Van
  • Magusin, P. C. M. M.
  • Gerritsen, G.
  • Han, W.
  • Abbenhuis, H. C. L.
  • Bhriain, N. M. Ní
  • Mezari, B.
  • Van Santen, Rutger
  • Ní Bhriain, N. M.
  • Santen, Van, R. A.
OrganizationsLocationPeople

article

Atom probe tomography of Au-Cu bimetallic nanoparticles synthesized by inert gas condensation

  • Danaie, M.
  • Martin, Tomas L.
  • Joyce, D. E.
  • Yang, Q.
  • Bagot, P. A. J.
  • Marceau, E.
  • Moody, M. P.
  • Broadley, V.
  • Young, N.
Abstract

The inert gas condensation method (IGC) produces multimetallic nanoparticles in a metastable state that may exhibit heterogeneities of size, structure, and composition. The deposition of IGC-fabricated nanoparticles on substrates allows for a detailed characterization by combination of aberration-corrected scanning transmission electron microscopy (TEM) and atom probe tomography (APT). Multiple particle monitoring and high-resolution scanning TEM give access to the size distribution of Au–Cu nanoparticles (<10 nm in diameter, bimodal distribution). TEM and APT show that the alloying between Cu and Au may stabilize the Ih structure for smaller particles (<4 nm). Combining high-resolution scanning transmission electron microscopy/energy dispersive X-ray and three-dimensional composition analysis by APT reveals that an excess of Cu may be present in a shell around the larger particles (>7 nm), while Cu is more randomly distributed in smaller particles.

Topics
  • nanoparticle
  • Deposition
  • impedance spectroscopy
  • transmission electron microscopy
  • atom probe tomography
  • inverse gas chromatography