People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ernst, Wolfgang E.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Photoemission Electron Microscopy of Blue and UV Surface Plasmons on Nanostructured Aluminum Filmscitations
- 2022Mixed-metal nanoparticlescitations
- 2021Material Properties Particularly Suited to be Measured with Helium Scattering: Selected Examples from 2D Materials, van der Waals Heterostructures, Glassy Materials, Catalytic Substrates,Topological Insulators and Superconducting Radio Frequency Materialscitations
- 2021Material properties particularly suited to be measured with helium scattering: selected examples from 2D materials, van der Waals heterostructures, glassy materials, catalytic substrates, topological insulators and superconducting radio frequency materialscitations
- 2020Helium droplet assisted synthesis of plasmonic Ag@ZnO core@shell nanoparticlescitations
- 2020Ultrashort XUV pulse absorption spectroscopy of partially oxidized cobalt nanoparticlescitations
- 2019Statics and dynamics of multivalley charge density waves in Sb(111)citations
- 2019Ultra-thin h-BN substrates for nanoscale plasmon spectroscopycitations
- 2019On the passivation of iron particles at the nanoscalecitations
- 2019The impact of swift electrons on the segregation of Ni-Au nanoalloyscitations
- 2019Effects of the Core Location on the Structural Stability of Ni-Au Core-Shell Nanoparticlescitations
- 2018Stability of Core-Shell Nanoparticles for Catalysis at Elevated Temperaturescitations
- 2017Electron-phonon coupling and surface Debye temperature of Bi2Te3(111) from helium atom scatteringcitations
- 2017Electron-phonon coupling and surface Debye temperature of Bi2Te3(111) from helium atom scatteringcitations
- 2017Thermally induced breakup of metallic nanowirescitations
- 2016Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography
- 2016Diffusion on a topological insulator surface: H2O on Bi2Te3(111)
Places of action
Organizations | Location | People |
---|
article
Effects of the Core Location on the Structural Stability of Ni-Au Core-Shell Nanoparticles
Abstract
<p>Structural changes of Ni-Au core-shell nanoparticles with increasing temperature are studied at atomic resolution. The bimetallic clusters, synthesized in superfluid helium droplets, show a centralized Ni core, which is an intrinsic feature of the growth process inside helium. After deposition on SiN<sub>x</sub>, the nanoparticles undergo a programmed temperature treatment in vacuum combined with an in situ transmission electron microscopy study of structural changes. We observe not only full alloying far below the actual melting temperature, but also a significantly higher stability of core-shell structures with decentralized Ni cores. Explanations are provided by large-scale molecular dynamics simulations on model structures consisting of up to 3000 metal atoms. Two entirely different diffusion processes can be identified for both types of core-shell structures, strikingly illustrating how localized, atomic features can still dictate the overall behavior of a nanometer-sized particle.</p>