People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nieminen, Heta-Elisa
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Reaction mechanism studies on atomic layer deposition process of AlF3citations
- 2021In situ reaction mechanism study on atomic layer deposition of intermetallic Co3Sn2 thin filmscitations
- 2020In situ reaction mechanism study on atomic layer deposition of intermetallic Co3Sn2 thin filmscitations
- 2019Atomic Layer Deposition of Photoconductive Cu2O Thin Filmscitations
- 2019Intercalation of Lithium Ions from Gaseous Precursors into beta-MnO2 Thin Films Deposited by Atomic Layer Depositioncitations
- 2019Intercalation of Lithium Ions from Gaseous Precursors into β-MnO 2 Thin Films Deposited by Atomic Layer Depositioncitations
Places of action
Organizations | Location | People |
---|
article
Intercalation of Lithium Ions from Gaseous Precursors into beta-MnO2 Thin Films Deposited by Atomic Layer Deposition
Abstract
LiMn2O4 is a promising candidate for a cathode material in lithium-ion batteries because of its ability to intercalate lithium ions reversibly through its three-dimensional manganese oxide network. One of the promising techniques for depositing LiMn2O4 thin-film cathodes is atomic layer deposition (ALD). Because of its unparalleled film thickness control and film conformality, ALD helps to fulfill the industry demands for smaller devices, nanostructured electrodes, and all-solid-state batteries. In this work, the intercalation mechanism of Li+ ions into an ALD-grown beta-MnO2 thin film was studied. Samples were prepared by pulsing (LiOBu)-Bu-t and H2O for different cycle numbers onto about 100 nm thick MnO2 films at 225 degrees C and characterized with X-ray absorption spectroscopy, X-ray diffraction, X-ray reflectivity, time-of-flight elastic recoil detection analysis, and residual stress measurements. It is proposed that for ; Peer reviewed