People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Welford, Adam
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2019Effect of thionation on the performance of PNDIT2-based polymer solar cellscitations
- 2018Nature and Extent of Solution Aggregation Determines the Performance of P(NDI2OD-T2) Thin-Film Transistorscitations
- 2018Impact of Acceptor Fluorination on the Performance of All-Polymer Solar Cellscitations
- 2018Thionation of naphthalene diimide moleculescitations
- 2017Unconventional Molecular Weight Dependence of Charge Transport in the High Mobility n-type Semiconducting Polymer P(NDI2OD-T2)citations
Places of action
Organizations | Location | People |
---|
article
Effect of thionation on the performance of PNDIT2-based polymer solar cells
Abstract
All-polymer solar cells have gained traction in recent years with solar cell performance approaching 10% power conversion efficiency (PCE). The n-type polymer PNDIT2, also known as N2200 or P(NDI2OD-T2), has been extensively used for both photovoltaic as well as field-effect transistor applications. When paired with donor materials that have appropriately aligned energy-levels, PNDIT2 has exhibited device efficiencies over 8% PCE, and organic field effect transistors fabricated with PNDIT2 exhibit mobilities over 1 cm2/Vs. Thionation of the NDI moiety, which is the substitution of imide oxygen with sulfur atoms, has been shown to improve the field-effect transistor performance of NDI-based small molecules. Applying this strategy to PNDIT2, we explored the effect that thionation, in a 2S-trans configuration, has on the performance of all-polymer solar cells fabricated with the donor polymer PTB7-Th. Solar cells were fabricated with the original polymer, PNDIT2, as a reference, and an optimized efficiency of 4.85% was achieved. The thionated analog was synthesized in batches with increasing ratios of 1S to 2S-trans thionation (15:85, 7:93, and 5:95), which enabled a systematic study of the effect thionation has on all-polymer solar cell performance. Devices with thionated PNDIT2 exhibited a systematic lowering of photovoltaic parameters with increasing thionation, resulting in device efficiencies of just 0.84%, 0.62%, and 0.42% PCE, respectively, with increasing thionation. The lower performance of the thionated blends is attributed to poor π-π stacking order in the thionated PNDIT2 phase, resulting in lower electron mobilities and finer phase separation. Evidence in support of this conclusion is provided by grazing incidence wide-angle X-ray scattering, transmission electron microscopy, photoluminescence quenching, and transient photocurrent analysis.