Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wagner, R.

  • Google
  • 12
  • 61
  • 181

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2024Relation of nonmetallic inclusions to the cyclic properties of steel 42CrMo4 after steel melt cleaning by filtration and related processes5citations
  • 2024Nanoscale rheology: dynamic mechanical analysis over a broad and continuous frequency range using photothermal actuation atomic force microscopy5citations
  • 2023Combined steel melt filtration through reactive and active filters4citations
  • 2022Material evaluation for engineering a novel crucible setup for the growth of oxygen free Czochralski silicon crystals7citations
  • 2022Nanoindentation of alumina and multiphase inclusions in 42CrMo4 steel12citations
  • 2021Direct tuning of the microstructural and mechanical properties of high-alloy austenitic steel by electron beam melting9citations
  • 2021Impact of melt conditioning and filtration on iron-rich β phase in AlSi9Cu3 and its fatigue life studied by μCT18citations
  • 2020Solvent-free simultaneous extraction of volatile and non-volatile antioxidants from rosemary (Rosmarinus officinalis L.) by microwave hydrodiffusion and gravity50citations
  • 2020Microstructural and mechanical characterization of high-alloy quenching and partitioning TRIP steel manufactured by electron beam melting11citations
  • 2020Effect of Compositional Variation Induced by EBM Processing on Deformation Behavior and Phase Stability of Austenitic Cr-Mn-Ni TRIP Steel17citations
  • 2020Abundance of Fe(III) during cultivation affects the microbiologically influenced corrosion (MIC) behaviour of iron reducing bacteria Shewanella putrefaciens20citations
  • 2019Proton Bulk Diffusion in Cubic Li7La3Zr2O12 Garnets as Probed by Single X-ray Diffraction23citations

Places of action

Chart of shared publication
Dudczig, S.
3 / 14 shared
Aneziris, C. G.
3 / 69 shared
Schmiedel, A.
1 / 6 shared
Biermann, Horst
7 / 342 shared
Döring, P.
1 / 1 shared
Storti, E.
3 / 10 shared
Weidner, A.
6 / 104 shared
Henkel, S.
1 / 43 shared
Taniguchi, Y.
1 / 1 shared
Piacenti, Ar
1 / 2 shared
Hawkins, N.
1 / 5 shared
Seifert, J.
1 / 2 shared
Proksch, R.
1 / 2 shared
Adam, C.
1 / 3 shared
Contera, S.
1 / 2 shared
Kerber, F.
1 / 1 shared
Sturm, Felix
1 / 1 shared
Götz, P.
1 / 2 shared
Schuster, G.
1 / 1 shared
Barroso, G.
1 / 1 shared
Meisner, P.
1 / 1 shared
Reimann, Christian
1 / 2 shared
Friedrich, Jochen
1 / 3 shared
Trempa, Matthias
1 / 2 shared
Peuker, U. A.
2 / 3 shared
Ditscherlein, L.
1 / 1 shared
Lehnert, R.
3 / 11 shared
Volkova, O.
4 / 27 shared
Schröder, C.
1 / 6 shared
Wendler, M.
3 / 13 shared
Seleznev, M.
2 / 11 shared
Fischer, H.
1 / 27 shared
Leineweber, A.
1 / 11 shared
Becker, H.
1 / 8 shared
Leißner, T.
1 / 2 shared
Keßler, A.
1 / 1 shared
Dietrich, B. G.
1 / 1 shared
Ditscherlein, R.
1 / 1 shared
Wolf, G.
1 / 3 shared
Santos, D.
1 / 5 shared
Cravotto, G.
1 / 3 shared
N., Lucas B.
1 / 1 shared
F., Ferreira D.
1 / 1 shared
S., Barin J.
1 / 1 shared
Voss, M.
1 / 1 shared
A., Mello P.
1 / 1 shared
Clausnitzer, P.
1 / 2 shared
Burkhardt, C.
1 / 4 shared
Günther, J.
1 / 9 shared
Niendorf, Thomas
1 / 301 shared
Burkhardt, Christina
1 / 4 shared
Lützenkirchen-Hecht, D.
1 / 3 shared
Özcan Sandikcioglu, Özlem
1 / 8 shared
Schutter, Jan David
1 / 2 shared
Dimper, Matthias
1 / 5 shared
Wurzler, Nina
1 / 3 shared
Redhammer, Günther J.
1 / 9 shared
Young, D.
1 / 2 shared
Rettenwander, D.
1 / 2 shared
Hiebl, C.
1 / 1 shared
Wilkening, H. M. R.
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020
2019

Co-Authors (by relevance)

  • Dudczig, S.
  • Aneziris, C. G.
  • Schmiedel, A.
  • Biermann, Horst
  • Döring, P.
  • Storti, E.
  • Weidner, A.
  • Henkel, S.
  • Taniguchi, Y.
  • Piacenti, Ar
  • Hawkins, N.
  • Seifert, J.
  • Proksch, R.
  • Adam, C.
  • Contera, S.
  • Kerber, F.
  • Sturm, Felix
  • Götz, P.
  • Schuster, G.
  • Barroso, G.
  • Meisner, P.
  • Reimann, Christian
  • Friedrich, Jochen
  • Trempa, Matthias
  • Peuker, U. A.
  • Ditscherlein, L.
  • Lehnert, R.
  • Volkova, O.
  • Schröder, C.
  • Wendler, M.
  • Seleznev, M.
  • Fischer, H.
  • Leineweber, A.
  • Becker, H.
  • Leißner, T.
  • Keßler, A.
  • Dietrich, B. G.
  • Ditscherlein, R.
  • Wolf, G.
  • Santos, D.
  • Cravotto, G.
  • N., Lucas B.
  • F., Ferreira D.
  • S., Barin J.
  • Voss, M.
  • A., Mello P.
  • Clausnitzer, P.
  • Burkhardt, C.
  • Günther, J.
  • Niendorf, Thomas
  • Burkhardt, Christina
  • Lützenkirchen-Hecht, D.
  • Özcan Sandikcioglu, Özlem
  • Schutter, Jan David
  • Dimper, Matthias
  • Wurzler, Nina
  • Redhammer, Günther J.
  • Young, D.
  • Rettenwander, D.
  • Hiebl, C.
  • Wilkening, H. M. R.
OrganizationsLocationPeople

article

Proton Bulk Diffusion in Cubic Li7La3Zr2O12 Garnets as Probed by Single X-ray Diffraction

  • Redhammer, Günther J.
  • Wagner, R.
  • Young, D.
  • Rettenwander, D.
  • Hiebl, C.
  • Wilkening, H. M. R.
Abstract

<p>Ceramic electrolytes, characterized by a very high ionic conductivity as it is the case for Al-stabilized cubic Li<sub>7</sub> La<sub>3</sub> Zr<sub>2</sub> O<sub>12</sub> (Al:LLZO), are of utmost interest to develop next-generation batteries that can efficiently store electrical energy from renewable sources. If envisaged not as a solid electrolyte but as a protecting layer in lithium-metal batteries with liquid electrolytes, the ceramic should allow Li<sup>+</sup> to pass through but block out other species such as H<sup>+</sup> . Protons, for example, originating from the decomposition of electrolyte solvent molecules, will form detrimental LiH that severely affects the performance and lifetime of such batteries. Although Li-ion dynamics in Al:LLZO has been the topic of many studies, until today, little information is available about macroscopic proton diffusion in LLZO. Here, we used single-crystal X-ray diffraction to study the Li<sup>+</sup> /H<sup>+</sup> exchange rate in AL:LLZO over a period of about 3 years. Rietveld refinements reveal that H solely exchanges on the 96h site. The Li/H portion significantly changes from the anhydrous pristine sample to Li<sub>4.21</sub> :H<sub>0.66</sub> after 17 days of altering in humid air and finally to Li<sub>2.55</sub> :H<sub>2.32</sub> after 960 days. Considering the change of the Li/H portion and the probing depth of X-rays into Al:LLZO, we applied a spherical diffusion model to estimate the proton diffusion coefficient of D<sub>0</sub> ≠10<sup>-17</sup> m<sup>2</sup> s<sup>-1</sup> . Such a proton diffusion coefficient value is sufficiently high to have significant impact on cell performance and safety if Al:LLZO is going to be used to protect the Li-metal anode from reaction with the liquid electrolyte. In particular, during Li plating, such a high H<sup>+</sup> penetration rate may accelerate the formation of LiH, giving rise to safety problems of these types of batteries.</p>

Topics
  • impedance spectroscopy
  • x-ray diffraction
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy
  • Lithium
  • ceramic
  • decomposition