People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Houben, Lothar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024A Gd-doped ceria/TiOx nanocomposite as the active layer in a three terminal electrochemical resistivity switch.citations
- 2024W18O49 Nanowhiskers Decorating SiO2 Nanofibers: Lessons from In Situ SEM/TEM Growth to Large Scale Synthesis and Fundamental Structural Understandingcitations
- 2023W18O49 Nanowhiskers Decorating SiO2 Nanofiberscitations
- 2023Encapsulation of Uranium Oxide in Multiwall WS<sub>2</sub> Nanotubes
- 2022Polar Crystal Habit and 3D Electron Diffraction Reveal the Malaria Pigment Hemozoin as a Selective Mixture of Centrosymmetric and Chiral Stereoisomerscitations
- 2022Nanotubes from the Misfit Layered Compound (SmS)1.19TaS2citations
- 2022Nanotubes from the Misfit Layered Compound $(SmS)_{1.19}TaS_2$ : Atomic Structure, Charge Transfer, and Electrical Propertiescitations
- 2020Large lattice distortions and size-dependent bandgap modulation in epitaxial halide perovskite nanowirescitations
- 2020Large lattice distortions and size-dependent bandgap modulation in epitaxial halide perovskite nanowirescitations
- 2018Guided Growth of Horizontal ZnS Nanowires on Flat and Faceted Sapphire Surfacescitations
- 2018A Mechanistic Study of Phase Transformation in Perovskite Nanocrystals Driven by Ligand Passivationcitations
- 2016Tubular structures from the LnS–TaS₂ (Ln = La, Ce, Nd, Ho, Er) and LaSe–TaSe₂ misfit layered compoundscitations
- 2016From dilute isovalent substitution to alloying in CdSeTe nanoplateletscitations
- 2008Metadislocations in the orthorhombic structurally complex alloy Al13Co4citations
- 2006Atomic-resolution imaging of lattice imperfections in semiconductors by conjoined aberration-corrected HRTEM and exit-plane wavefunction retrievalcitations
- 2000Plasmaabscheidung von mikrokristallinem Silizium: Merkmale und Mikrostruktur und deren Deutung im Sinne von Wachstumsvorgängen
Places of action
Organizations | Location | People |
---|
article
Guided Growth of Horizontal ZnS Nanowires on Flat and Faceted Sapphire Surfaces
Abstract
The surface-guided growth of horizontal nanowires (NWs) allows assembly and alignment of the NWs on the substrate during the synthesis, thus eliminating the need for additional processes after growth. One of the major advantages of guided growth over postgrowth assembly is the control on the NWs direction, crystallographic orientation, and position. In this study, we use the guided growth approach to synthesize high-quality, single-crystal, aligned horizontal ZnS NWs on flat and faceted sapphire surfaces, and show how the crystal planes of the different substrates affects the crystal structure and orientation of the NWs. We also show initial results of the effect of Cu doping on their photoluminescence. Such high-quality aligned ZnS NWs can potentially be assembled as key components in phosphorescent displays and markers due to their unique optical properties. The ZnS NWs have either wurtzite or zinc-blende structure depending on the substrate orientations and contain intrinsic point defects such as sulfur vacancies, which are common in this material. The crystallographic orientations are consistent with those of guided NWs from other semiconductor materials, demonstrating the generality of the guided growth phenomenon. The successfully grown ZnS NWs and the Cu doping are the first step toward the fabrication of optoelectronic devices based on ZnS nanostructures.<br />