People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Roy, Sudipta
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Influence of corrosion reactions on the pulse electrodeposition of metals and alloyscitations
- 2022Modelling the scaling-up of the nickel electroforming processcitations
- 2022Characteristics of anode materials for nickel electroformingcitations
- 2021Pulse electrodeposition of copper in the presence of a corrosion reactioncitations
- 2020Effect of water on the electrodeposition of copper from a deep eutectic solventcitations
- 2019Investigation of water absorption profile of mineral wool insulation
- 2019Electrodeposition of Fe-Sn from the chloride-based electrolytecitations
- 2019Electroforming of large scale nickel structures for leading-edge energy, aerospace and marine applications
- 2018Anodic reactions and the corrosion of copper in deep eutectic solventscitations
- 2018Pt-Ni Subsurface Alloy Catalystscitations
- 2018Electrodeposition of Cu from a water-containing deep eutectic solvent
- 2018Design of an ultrasonic tank reactor for copper deposition at electrodes separated by a narrow gapcitations
- 2017The influence of water on the cathodic voltammetric responses of choline chloride-urea and choline chloride-ethylene glycol deep eutectic solvents
- 2017Pulse plating of copper from deep eutectic solventscitations
- 2017Electrodeposition of copper from deep eutectic solvents by using pulse current
- 2017Effect of water on Cu electrodeposition from ethaline based deep eutectic solvent
- 2017Effect of water on Cu electrodeposition from ethaline based deep eutectic solvent
- 2016Metal recovery from low concentration solutions using a flow-by reactor under galvanostatic approachcitations
- 2016Sono-electrodeposition transfer of micro-scale copper patterns on to A7 substrates using a mask-less methodcitations
- 2015A soluble molecular variant of the semiconducting silicondiselenidecitations
- 2015The role of fluorosurfactant on Cu-Sn electrodeposition from methanesulfonic acidcitations
- 2015Codeposition of Cu-Sn from ethaline deep eutectic solventcitations
- 2014Effect of ultrasound on mass transfer during electrodeposition for electrodes separated by a narrow gapcitations
- 2014Electrochemical copper deposition from an ethaline-CuCl2·2H2O DEScitations
- 2012Pulse Plating
Places of action
Organizations | Location | People |
---|
article
Pt-Ni Subsurface Alloy Catalysts
Abstract
<p>Methane-dissociative chemisorption is the rate-determining step in the industrially important steam reforming and dry reforming reactions of methane. Widely used industrial catalysts containing Ni as the active metal face the problems of carbon deposition and deactivation, whereas Pt surfaces with lower barrier are expensive to be used in the industrial scale. Using density functional theory calculations, a series of surface and subsurface Ni-Pt bimetallic surfaces were studied to understand the synergistic catalytic activity of alloying elements toward facilitating methane dissociation and in resisting carbon formation. Addition of Ni to Pt(111) decreased activation energy barriers, whereas a linear increase in barrier was found when Pt is added to Ni(111) surface. The observed reactivity trends were explained using surface-based descriptors like work function, surface energy, and d-band center and also using energy-based descriptors, namely, Bronsted-Evans-Polanyi and transition-state scaling relationships. Changes in barrier heights and locations of the barrier with lattice atom motion were calculated to include the effect of surface temperature on dissociation probabilities. Dissociation probabilities thus calculated at different surface temperatures using semiclassical methods showed that reactivity increased with surface temperature on all surface alloys. Overall, two surfaces, viz., Ni9/Pt(111) and sub-Pt9/Ni(111), showed improved behavior toward CH<sub>4</sub> dissociation, irrespective of the composition of underlying layers. C<sub>2</sub> formation on these two alloys also showed higher barriers compared to pure Ni(111) surface. However, considering all aspects like energy barriers to CH<sub>4</sub> dissociation and CH dissociation, carbon adsorption energy, and cost, the subsurface alloy, sub-Pt9/Ni(111), showed an enhanced overall performance as a reforming catalyst.</p>