People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lhuillier, Emmanuel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Advancing the Coupling of III-V Quantum Dots to Photonic Structures to Shape Their Emission Diagramcitations
- 2024The Electronic Impact of Light-Induced Degradation in CsPbBr3 Perovskite Nanocrystals at Gold Interfacescitations
- 2024THz scanning near-field microscopy of HgTe nanocrystals
- 2023Unidirectional Rashba spin splitting in single layer WS<sub>2(1−x)</sub>Se<sub>2x</sub> alloycitations
- 2023Unidirectional Rashba Spin Splitting in Single Layer WS2(1-x)Se2x alloycitations
- 2022Chiral Helices Formation by Self-Assembled Molecules on Semiconductor Flexible Substratescitations
- 2022Evidence for highly p-type doping and type II band alignment in large scale monolayer WSe2/Se-terminated GaAs heterojunction grown by molecular beam epitaxycitations
- 2022Critical role of water on the synthesis and gelling of gamma-In2S3 nanoribbons with giant aspect ratio
- 2022Colloidal II–VI—Epitaxial III–V heterostructure: A strategy to expand InGaAs spectral responsecitations
- 2021Indirect to direct band gap crossover in two-dimensional WS2(1−x)Se2x alloyscitations
- 2021Indirect to direct band gap crossover in two-dimensional WS 2(1-x) Se 2x alloys
- 2020A nanoplatelet-based light emitting diode and its use for all-nanocrystal LiFi-like communicationcitations
- 2020Time Resolved Photoemission to Unveil Electronic Coupling Between Absorbing and Transport Layers in a Quantum Dot Based Solar Cellcitations
- 2020Interactions Between Topological Defects and Nanoparticlescitations
- 2020Pushing absorption of perovskite nanocrystals into the infraredcitations
- 2020Pushing absorption of perovskite nanocrystals into the infraredcitations
- 2019Nanophotonic approaches for integrated quantum photonics
- 2019Halide Ligands to Release Strain in Cadmium Chalcogenide Nanoplatelets and Achieve High Brightnesscitations
- 2018Fine structure of excitons and electron–hole exchange energy in polymorphic CsPbBr 3 single nanocrystalscitations
- 2017Interface dipole and band bending in the hybrid p − n heterojunction Mo S 2 / GaN ( 0001 )citations
- 2017Interface dipole and band bending in the hybrid p − n heterojunction Mo S 2 / GaN ( 0001 )citations
- 2017Probing Charge Carrier Dynamics to Unveil the Role of Surface Ligands in HgTe Narrow Band Gap Nanocrystalscitations
- 2017Electronic structure of CdSe-ZnS 2D nanoplateletscitations
- 2016van der Waals Epitaxy of GaSe/Graphene Heterostructure: Electronic and Interfacial Propertiescitations
- 2016Phototransport in colloidal nanoplatelets arraycitations
- 2011Thermal properties of mid-infrared colloidal quantum dot detectorscitations
Places of action
Organizations | Location | People |
---|
article
Probing Charge Carrier Dynamics to Unveil the Role of Surface Ligands in HgTe Narrow Band Gap Nanocrystals
Abstract
International audience ; Colloidal nanocrystals are an interesting platform for the design of low cost optoelectronic devices especially in the infrared range of wavelengths. Mercury chalcogenides have reached high maturity to address wavelengths above the telecom range (1.5 µm). However, no screening of the surface chemistry influence has been conducted yet. In this paper, we systematically probe the influence of a series of ligands: Cl-, SCN-, 1,2 ethanedithiol, 1,4 benzenedithiol, 1 octanethiol, 1 butanethiol, As2S3 , S2- on the photoconductive properties of HgTe nanocrystal thin films. A high bandwidth, large dynamic transient photocurrent setup is used to determine the photocarrier dynamics. Two regimes are clearly identified. At early stage (few ns) a fast decay of the photocurrent is resulting from recombination and trapping. Then transport enters in a multiple trapping regime where carriers present a continuously decreasing effective value of their mobility. The power law dependence of the conductance can be used to estimate the trap carrier density and determine the value of the Urbach energy (35 to 50 meV). We demonstrate that a proper choice of ligand is necessary for a trade-off between the material performance (µτ product) and the quality of the surface passivation (to keep a low Urbach energy