People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kronik, Leeor
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2021Mechanism and Timescales of Reversible p‐Doping of Methylammonium Lead Triiodide by Oxygencitations
- 2021Mechanism and Timescales of Reversible p‐Doping of Methylammonium Lead Triiodide by Oxygencitations
- 2019Constructing the Electronic Structure of CH3NH3PbI3 and CH3NH3PbBr3 Perovskite Thin Films from Single-Crystal Band Structure Measurementscitations
- 2018Effect of Internal Heteroatoms on Level Alignment at Metal/Molecular Monolayer/Si Interfacescitations
- 2017Biologically Controlled Morphology and Twinning in Guanine Crystalscitations
- 2016Valence and Conduction Band Densities of States of Metal Halide Perovskitescitations
- 2016Enhanced Magnetoresistance in Molecular Junctions by Geometrical Optimization of Spin-Selective Orbital Hybridizationcitations
- 2016High Chloride Doping Levels Stabilize the Perovskite Phase of Cesium Lead Iodidecitations
- 2016Optical phonons in methylammonium lead halide perovskites and implications for charge transportcitations
- 2015Multiscale approach to the electronic structure of doped semiconductor surfacescitations
- 2015"Guanigma"citations
- 2015"guanigma":The Revised Structure of Biogenic Anhydrous Guaninecitations
- 2013Effect of molecule-surface reaction mechanism on the electronic characteristics and photovoltaic performance of molecularly modified Sicitations
- 2010Hg/Molecular Monolayer-Si Junctionscitations
- 2006Spin-polarized electronic structure of Mn-IV-V2 chalcopyritescitations
- 2005Size-dependent spintronic properties of dilute magnetic semiconductor nanocrystalscitations
- 2004Electronic structure and spin polarization of MnGaPcitations
- 2002Electronic structure and spin polarization of MnxGa1-xNcitations
- 2001Electronic structure and spin polarization of Mn-containing dilute magnetic III-V semiconductorscitations
- 2000Frontier orbital model of semiconductor surface passivation
Places of action
Organizations | Location | People |
---|
article
Effect of Internal Heteroatoms on Level Alignment at Metal/Molecular Monolayer/Si Interfaces
Abstract
Molecular monolayers at metal/semiconductor heterointerfaces affect electronic energy level alignment at the interface by modifying the interface's electrical dipole. On a free surface, the molecular dipole is usually manipulated by means of substitution at its external end. However, at an interface such outer substituents are in close proximity to the top contact, making the distinction between molecular and interfacial effects difficult. To examine how the interface dipole would be influenced by a single atom, internal to the molecule, we used a series of three molecules of identical binding and tail groups, differing only in the inner atom: aryl vinyl ether (PhO), aryl vinyl sulfide (PhS), and the corresponding molecule with a CH2 group - allyl benzene (PhC). Molecular monolayers based on all three molecules have been adsorbed on a flat, oxide-free Si surface. Extensive surface characterization, supported by density functional theory calculations, revealed high-quality, well-aligned monolayers exhibiting excellent chemical and electrical passivation of the silicon substrate, in all three cases. Current-voltage and capacitance-voltage analysis of Hg/PhX (X = C, O, S)/Si interfaces established that the type of internal atom has a significant effect on the Schottky barrier height at the interface, i.e., on the energy level alignment. Surprisingly, despite the formal chemical separation of the internal atom and the metallic electrode, Schottky barrier heights were not correlated to changes in the semiconductor's effective work function, deduced from Kelvin probe and ultraviolet photoemission spectroscopy on the monolayer-adsorbed Si surface. Rather, these changes correlated well with the ionization potential of the surface-adsorbed molecules. This is interpreted in terms of additional polarization at the molecule/metal interface, driven by potential equilibration considerations even in the absence of a formal chemical bond to the top Hg contact.