People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zuilhof, Han
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Polyester-Based Polyelectrolyte Complexes
- 2023Internal hydrogen bonding of imines to control and enhance the dynamic mechanical properties of covalent adaptable networkscitations
- 2022Self-healing antifouling polymer brushescitations
- 2022Diblock and random antifouling bioactive polymer brushes on gold surfaces by visible-light-induced polymerization (SI-PET-RAFT) in watercitations
- 2022Self-healing antifouling polymer brushes : Effects of degree of fluorinationcitations
- 2022Synthesis of well-defined linear-bottlebrush-linear triblock copolymer towards architecturally-tunable soft materialscitations
- 2021Zwitterionic dendrimer – Polymer hybrid copolymers for self-assembling antifouling coatingscitations
- 2020PLL-Poly(HPMA) Bottlebrush-Based Antifouling Coatings: Three Grafting Routescitations
- 2020Fast room-temperature functionalization of silicon nanoparticles using alkyl silanolscitations
- 2018High electrical conductivity and high porosity in a Guest@MOF material : Evidence of TCNQ ordering within Cu3BTC2 microporescitations
- 2018Effect of Internal Heteroatoms on Level Alignment at Metal/Molecular Monolayer/Si Interfacescitations
- 2017Preparation and gas sensing properties of nanocomposite polymers on micro-Interdigitated electrodes for detection of volatile organic compounds at room temperaturecitations
- 2016Local Light-Induced Modification of the Inside of Microfluidic Glass Chipscitations
- 2016Clickable Polylactic Acids by Fast Organocatalytic Ring-Opening Polymerization in Continuous Flowcitations
- 2013Covalently attached organic monolayers onto silicon carbide from 1-alkynescitations
- 2010Hg/Molecular Monolayer-Si Junctionscitations
Places of action
Organizations | Location | People |
---|
article
Effect of Internal Heteroatoms on Level Alignment at Metal/Molecular Monolayer/Si Interfaces
Abstract
Molecular monolayers at metal/semiconductor heterointerfaces affect electronic energy level alignment at the interface by modifying the interface's electrical dipole. On a free surface, the molecular dipole is usually manipulated by means of substitution at its external end. However, at an interface such outer substituents are in close proximity to the top contact, making the distinction between molecular and interfacial effects difficult. To examine how the interface dipole would be influenced by a single atom, internal to the molecule, we used a series of three molecules of identical binding and tail groups, differing only in the inner atom: aryl vinyl ether (PhO), aryl vinyl sulfide (PhS), and the corresponding molecule with a CH2 group - allyl benzene (PhC). Molecular monolayers based on all three molecules have been adsorbed on a flat, oxide-free Si surface. Extensive surface characterization, supported by density functional theory calculations, revealed high-quality, well-aligned monolayers exhibiting excellent chemical and electrical passivation of the silicon substrate, in all three cases. Current-voltage and capacitance-voltage analysis of Hg/PhX (X = C, O, S)/Si interfaces established that the type of internal atom has a significant effect on the Schottky barrier height at the interface, i.e., on the energy level alignment. Surprisingly, despite the formal chemical separation of the internal atom and the metallic electrode, Schottky barrier heights were not correlated to changes in the semiconductor's effective work function, deduced from Kelvin probe and ultraviolet photoemission spectroscopy on the monolayer-adsorbed Si surface. Rather, these changes correlated well with the ionization potential of the surface-adsorbed molecules. This is interpreted in terms of additional polarization at the molecule/metal interface, driven by potential equilibration considerations even in the absence of a formal chemical bond to the top Hg contact.