People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
García Lastra, Juan Maria
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytescitations
- 2022Dual Role of Mo 6 S 8 in Polysulfide Conversion and Shuttle for Mg–S Batteriescitations
- 2021Computational design of ductile magnesium alloy anodes for magnesium ion batteriescitations
- 2020Multi‐Electron Reactions Enabled by Anion‐Based Redox Chemistry for High‐Energy Multivalent Rechargeable Batteriescitations
- 2020Multi-electron reactions enabled by anion-participated redox chemistry for high-energy multivalent rechargeable batteriescitations
- 2018Comparative DFT+U and HSE Study of the Oxygen Evolution Electrocatalysis on Perovskite Oxidescitations
- 2018Machine learning-based screening of complex molecules for polymer solar cellscitations
- 2016A Density Functional Theory Study of the Ionic and Electronic Transport Mechanisms in LiFeBO3 Battery Electrodescitations
- 2016A Density Functional Theory Study of the Ionic and Electronic Transport Mechanisms in LiFeBO 3 Battery Electrodescitations
- 2015Effect of Sb Segregation on Conductance and Catalytic Activity at Pt/Sb-Doped SnO2 Interface: A Synergetic Computational and Experimental Studycitations
- 2015Effect of Sb Segregation on Conductance and Catalytic Activity at Pt/Sb-Doped SnO 2 Interface: A Synergetic Computational and Experimental Studycitations
- 2013Stability and bandgaps of layered perovskites for one- and two-photon water splittingcitations
- 2012Understanding Periodic Dislocations in 2D Supramolecular Crystals: The PFP/Ag(111) Interfacecitations
- 2010Optical to ultraviolet spectra of sandwiches of benzene and transition metal atoms: Time dependent density functional theory and many-body calculationscitations
- 2010Graphene on metals: A van der Waals density functional studycitations
Places of action
Organizations | Location | People |
---|
article
Comparative DFT+U and HSE Study of the Oxygen Evolution Electrocatalysis on Perovskite Oxides
Abstract
The most common method for incorporating strong electron correlations iseither to apply the Hubbard U correction on top of standard densityfunctional theory calculations (DFT) or to use hybrid functionals. Inthis study, we elucidate the sensitivity of the Hubbard U correction inthe PBE+U functional and the amount of exact exchange, α, in the hybridHSE functional on the structural stability, catalytic activity andelectronic conductivity of pure and doped perovskite oxides, ABO3, (A =La, Ca, Sr and Ba, B = Cr, Mn, Fe, Co, Ni and Cu) for oxygen evolutionelectrocatalysis. We find a strong dependence of heat of formations andreaction overpotentials for a range of U = 0, 3 and 5 eV and α = 0,0.15, 0.25, 0.35 values investigated in this study, which we attributeprimarily to changes in the oxidation state of B cations. If the valenceof B cations in the perovskite and reference oxide is the same, thenthe U- and α dependence is very small. On the other hand, if thevalences are different then heat of formations can change by as much as 1eV. As the oxidation state of a surface metal ion depends on adsorbedintermediate and nature of the element, similar differences in energiesappear in the calculated reaction overpotentials for oxygen evolution.The large U and α dependence sets serious constraints on the use ofDFT+U and HSE methods for assessing stabilities and catalytic activitiesof perovskite oxides. In addition, the large α dependence raises thequestion whether HSE calculations can improve sufficiently the accuracyof DFT+U results for multi-step electrochemical reactions to justify theexcess computational cost. Although we have investigated only oneparticular class of catalysts and one electrochemical reaction, theresults of this study can expectedly be generalized to other stronglycorrelated systems in which the oxidation state of the surface changesduring reaction. The influence of U on the electronic conductivity issignificant only in cases where it qualitatively changes the electronicstructure, by e.g. opening the band-gap. From a combinatorial analysison pure and doped oxides, we identify electronically conductivecatalysts classified according to different electron conduction types:intrinsic conductivity (Fe4+, Co3+(intermediate spin, IS) and Ni3+),electron polaron hopping (along Mn3+-O-Mn4+ chains) and charge transportthrough holes in the valence band.