People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wencka, Magdalena
Institute of Molecular Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Crystal Structure and Ferromagnetism of the CeFe₉Si₄ Intermetallic Compoundcitations
- 2022Zero-Magnetostriction Magnetically Soft High-Entropy Alloys in the AlCoFeNiCux (x = 0.6–3.0) System for Supersilent Applicationscitations
- 2022The Effect of Scandium on the Structure, Microstructure and Superconductivity of Equimolar Sc-Hf-Nb-Ta-Ti-Zr Refractory High-Entropy Alloyscitations
- 2022Structure and superconductivity of tin-containing HfTiZrSnM (M = Cu, Fe, Nb, Ni) medium-entropy and high-entropy alloyscitations
- 2022The effect of scandium on the structure, microstructure and superconductivity of equimolar Sc-Hf-Nb-Ta-Ti-Zr refractory high-entropy alloyscitations
- 2022Electronic transport properties of the Al0.5TiZrPdCuNi alloy in the high-entropy alloy and metallic glass formscitations
- 2021Structure and Superconductivity of Tin-Containing HfTiZrSnM (M = Cu, Fe, Nb, Ni) Medium-Entropy and High-Entropy Alloyscitations
- 2018The effect of surface oxidation on the catalytic properties of Ga3Ni2 intermetallic compound for carbon dioxide reductioncitations
- 2017Nanoscale Effects of Radiation (UV, X-ray, and γ) on Calcite Surfaces: Implications for its Mechanical and Physico-Chemical Propertiescitations
- 2014Synthesis and Magnetic Properties of Hematite Particles in a “Nanomedusa” Morphologycitations
Places of action
Organizations | Location | People |
---|
article
Nanoscale Effects of Radiation (UV, X-ray, and γ) on Calcite Surfaces: Implications for its Mechanical and Physico-Chemical Properties
Abstract
<p>Calcite, the most stable polymorph of calcium carbonate (CaCO<sub>3</sub>), attracts growing attention due to its wide applications in many fields, such as composite materials, food industry, biomineralization, and dating of archeological and geological objects. Our study shows the influence of UV, X-ray and γ-radiation on the mechanical and physicochemical properties of calcite at the nanoscale. Using nanoindentation technique we observed a clear detriment in the mechanical response (hardness and elastic modulus) of the calcite (104) surface after irradiation, most visible in the case of UV. Changes in mechanical properties were correlated with the accumulation of radiation defects detected using EPR spectroscopy, and information on chemical bonding and composition obtained through XPS analyses. Additionally, the efficiency in generating defects for all three types of radiation was compared, which allowed us to propose a possible mechanism of UV-induced formation of radiation defects in calcite.</p>