People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baranov, Alexander V.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2020Influence of the solvent environment on luminescent centers within carbon dotscitations
- 2020Strongly Luminescent Composites Based on Carbon Dots Embedded in a Nanoporous Silicate Glasscitations
- 2020Stable Luminescent Composite Microspheres Based on Porous Silica with Embedded CsPbBr3 Perovskite Nanocrystalscitations
- 2019Ternary Composites with PbS Quantum Dots for Hybrid Photovoltaicscitations
- 20183D superstructures with an orthorhombic lattice assembled by colloidal PbS quantum dotscitations
- 2017Optical Anisotropy of Topologically Distorted Semiconductor Nanocrystalscitations
- 2017Photoluminescence of Lead Sulfide Quantum Dots of Different Sizes in a Nanoporous Silicate Glass Matrixcitations
- 2017Excitons in gyrotropic quantum-dot supercrystalscitations
- 2016Excitonic energy bands formation in Quantum dot supercrystals
Places of action
Organizations | Location | People |
---|
article
Photoluminescence of Lead Sulfide Quantum Dots of Different Sizes in a Nanoporous Silicate Glass Matrix
Abstract
The optical properties of lead sulfide quantum dots (QDs) of different sizes embedded in a nanoporous silicate glass matrix (NSM) are investigated by steady-state and transient photoluminescence spectroscopy. The use of this matrix allows the fabrication of samples with reproducible optical characteristics, for both isolated and close-packed QDs. Low-temperature PL analysis of isolated QDs with sizes of 3.7 and 4.5 nm shows that the coefficient of temperature shift of the PL position changes sign with reducing QD size because of size-dependent contributions from thermal expansion, mechanical strain, and electron-phonon coupling. The PL intensity is determined by size-dependent splitting of the lowest energy electronic state. (Graph Presented).