Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Skylaris, Chris-Kriton

  • Google
  • 2
  • 9
  • 87

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Effect of polymerization statistics on the electronic properties of copolymers for organic photovoltaics12citations
  • 2011Accurate ionic forces and geometry optimization in linear-scaling density-functional theory with local orbitals75citations

Places of action

Chart of shared publication
Boschetto, Gabriele
1 / 4 shared
Krompiec, Michal
1 / 1 shared
Dziedzic, Jacek
1 / 4 shared
Xue, Hong-Tao
1 / 1 shared
Robinson, Mark
1 / 3 shared
Hine, Nicholas
1 / 3 shared
Mostofi, Arash
1 / 1 shared
Payne, Mike
1 / 1 shared
Haynes, Peter
1 / 2 shared
Chart of publication period
2017
2011

Co-Authors (by relevance)

  • Boschetto, Gabriele
  • Krompiec, Michal
  • Dziedzic, Jacek
  • Xue, Hong-Tao
  • Robinson, Mark
  • Hine, Nicholas
  • Mostofi, Arash
  • Payne, Mike
  • Haynes, Peter
OrganizationsLocationPeople

article

Effect of polymerization statistics on the electronic properties of copolymers for organic photovoltaics

  • Boschetto, Gabriele
  • Krompiec, Michal
  • Dziedzic, Jacek
  • Skylaris, Chris-Kriton
  • Xue, Hong-Tao
Abstract

Statistical block copolymers, composed of donor (D) and acceptor (A) blocks, are a novel type of material for organic photovoltaics (OPVs) devices. In particular a new series of polymers based on PBTZT-stat-BDTT-8, recently developed by Merck, offers high solubility in different solvents, and a high power conversion efficiency (PCE) in different device architectures. Although it is known that the electronic properties of these materials may be significantly affected by attaching different functional groups on different blocks, it is not fully clear how important the influence of the polymer composition (i.e., the D/A block ratio) is, even if previous studies suggest that this might also have an effect. Therefore, the effect of the polymer composition in terms of HOMO, LUMO energies, and band gap was explored by studying a number of long chain oligomers with more than 1000 atoms each and with different D/A ratios. This study, that is novel both conceptually and methodologically, was made possible by using the linear-scaling reformulation of DFT implemented in the ONETEP code. Our results showed that changing the composition has a significant effect on the electronic structure of statistical copolymers, making this an alternative and suitable strategy to obtain materials with desired properties. Also, a systematic analysis of the effect of a range of different substituents placed in the D and A blocks of PBTZT-stat-BDTT-8 was performed in order to investigate how this class of materials responds to functionalization. We found that it is not possible to know a priori using chemical intuition what kind of influence different types of functional groups may have on these systems, and therefore, computational modeling is essential.

Topics
  • impedance spectroscopy
  • density functional theory
  • copolymer
  • block copolymer
  • functionalization
  • power conversion efficiency