People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jankowski, Piotr
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytes:A hierarchical model based on experiments and ab initio simulationscitations
- 2023Boron‐Based Functional Additives Enable Solid Electrolyte Interphase Engineering in Calcium Metal Batterycitations
- 2023Boron‐Based Functional Additives Enable Solid Electrolyte Interphase Engineering in Calcium Metal Batterycitations
- 2023Boron-Based Functional Additives Enable Solid Electrolyte Interphase Engineering in Calcium Metal Batterycitations
- 2023Electrolytes for Zn Batteries:Deep Eutectic Solvents in Polymer Gelscitations
- 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytescitations
- 2022Dual Role of Mo 6 S 8 in Polysulfide Conversion and Shuttle for Mg–S Batteriescitations
- 2022Dual Role of Mo<sub>6</sub>S<sub>8</sub> in Polysulfide Conversion and Shuttle for Mg–S Batteriescitations
- 2022Boron-Based Functional Additives Enable Solid Electrolyte Interphase Engineering in Calcium Metal Batterycitations
- 2021Prospects for Improved Magnesocene-Based Magnesium Battery Electrolytescitations
- 2020Multi‐Electron Reactions Enabled by Anion‐Based Redox Chemistry for High‐Energy Multivalent Rechargeable Batteriescitations
- 2020Multi-electron reactions enabled by anion-participated redox chemistry for high-energy multivalent rechargeable batteriescitations
- 2020Multi‐electron reactions enabled by anion‐based redox chemistry for high‐energy multivalent rechargeable batteries
- 2018Snapshots of the Hydrolysis of Lithium 4,5-Dicyanoimidazolate-Glyme Solvates. Impact of Water Molecules on Aggregation Processes in Lithium-Ion Battery Electrolytescitations
- 2016Understanding of Lithium 4,5-Dicyanoimidazolate-Poly(ethylene oxide) System: Influence of the Architecture of the Solid Phase on the Conductivitycitations
Places of action
Organizations | Location | People |
---|
article
Understanding of Lithium 4,5-Dicyanoimidazolate-Poly(ethylene oxide) System: Influence of the Architecture of the Solid Phase on the Conductivity
Abstract
Solid polymer electrolytes (SPEs) with high lithium conductivity are very beneficial as a safe material for lithium battery applications. Herein we present new set of SPEs based on lithium 2-trifluoromethyl-4,5-dicyanoimidazolate (LiTDI) with wide range of ether oxygen to lithium molar ratios. The phase composition was characterized in detail with thermal, diffraction, and spectroscopic techniques, and its influence on conductivity behavior was examined. Two detected crystalline phases of LiTDI–poly(ethylene oxide) (PEO) were simulated with computational methods. The obtained results allowed insight into the structure of these electrolytes and helped us to understand on the molecular level factors influencing electrochemical properties and phase behavior. It was shown that ability to form a low-melting phase can be used to lower the temperature window of operation. That made it possible to keep such SPEs amorphous at 30 °C during 80 days. The thermal stability of the samples was checked to prove the safety of the electrolytes