Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ostrowski, Andrzej

  • Google
  • 5
  • 27
  • 75

Warsaw University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2019Investigation of different ways of activation of fly ash–cement mixtures. Part 1. Chemical activation by Na2SO4 and Ca(OH)236citations
  • 2018Thermally induced structural transformations of linear coordination polymers based on aluminum tris(diorganophosphates)6citations
  • 2016Linear Coordination Polymers Based on Aluminum Phosphates: Synthesis, Crystal Structure and Morphology6citations
  • 2016Microwave Plasma Chemical Vapor Deposition of SbxOy/C negative electrodes and their compatibility with lithium and sodium Hückel salts - Based, tailored electrolytes18citations
  • 2016Understanding of Lithium 4,5-Dicyanoimidazolate-Poly(ethylene oxide) System: Influence of the Architecture of the Solid Phase on the Conductivity9citations

Places of action

Chart of shared publication
Pacewska, Barbara
1 / 2 shared
Wilińska, Iwona
1 / 2 shared
Krztoń-Maziopa, Anna
1 / 21 shared
Florjańczyk, Zbigniew
2 / 10 shared
Wiecińska, Paulina
1 / 22 shared
Zachara, Janusz
2 / 6 shared
Dębowski, Maciej
2 / 3 shared
Łokaj, Krzysztof
2 / 2 shared
Falkowski, Paweł
1 / 10 shared
Plichta, Andrzej
1 / 8 shared
Wolak, Andrzej
1 / 1 shared
Żurawski, Konrad
1 / 1 shared
Zdunek, Joanna
1 / 34 shared
Żukowska, Grażyna
2 / 12 shared
Michalczewski, K.
1 / 1 shared
Syzdek, Jarosław
1 / 3 shared
Żero, Elżbieta
1 / 3 shared
Marcinek, Marek
1 / 8 shared
Trzeciak, Tomasz
1 / 2 shared
Bitner-Michalska, Anna
1 / 2 shared
Niedzicki, Leszek
1 / 5 shared
Korczak, Jędrzej
1 / 3 shared
Zalewska, Aldona
1 / 8 shared
Wieczorek, Władysław
1 / 19 shared
Marczewski, Maciej
1 / 4 shared
Dranka, Maciej
1 / 7 shared
Jankowski, Piotr
1 / 15 shared
Chart of publication period
2019
2018
2016

Co-Authors (by relevance)

  • Pacewska, Barbara
  • Wilińska, Iwona
  • Krztoń-Maziopa, Anna
  • Florjańczyk, Zbigniew
  • Wiecińska, Paulina
  • Zachara, Janusz
  • Dębowski, Maciej
  • Łokaj, Krzysztof
  • Falkowski, Paweł
  • Plichta, Andrzej
  • Wolak, Andrzej
  • Żurawski, Konrad
  • Zdunek, Joanna
  • Żukowska, Grażyna
  • Michalczewski, K.
  • Syzdek, Jarosław
  • Żero, Elżbieta
  • Marcinek, Marek
  • Trzeciak, Tomasz
  • Bitner-Michalska, Anna
  • Niedzicki, Leszek
  • Korczak, Jędrzej
  • Zalewska, Aldona
  • Wieczorek, Władysław
  • Marczewski, Maciej
  • Dranka, Maciej
  • Jankowski, Piotr
OrganizationsLocationPeople

article

Understanding of Lithium 4,5-Dicyanoimidazolate-Poly(ethylene oxide) System: Influence of the Architecture of the Solid Phase on the Conductivity

  • Ostrowski, Andrzej
  • Żukowska, Grażyna
  • Niedzicki, Leszek
  • Korczak, Jędrzej
  • Zalewska, Aldona
  • Wieczorek, Władysław
  • Marczewski, Maciej
  • Dranka, Maciej
  • Jankowski, Piotr
Abstract

Solid polymer electrolytes (SPEs) with high lithium conductivity are very beneficial as a safe material for lithium battery applications. Herein we present new set of SPEs based on lithium 2-trifluoromethyl-4,5-dicyanoimidazolate (LiTDI) with wide range of ether oxygen to lithium molar ratios. The phase composition was characterized in detail with thermal, diffraction, and spectroscopic techniques, and its influence on conductivity behavior was examined. Two detected crystalline phases of LiTDI–poly(ethylene oxide) (PEO) were simulated with computational methods. The obtained results allowed insight into the structure of these electrolytes and helped us to understand on the molecular level factors influencing electrochemical properties and phase behavior. It was shown that ability to form a low-melting phase can be used to lower the temperature window of operation. That made it possible to keep such SPEs amorphous at 30 °C during 80 days. The thermal stability of the samples was checked to prove the safety of the electrolytes

Topics
  • polymer
  • amorphous
  • Oxygen
  • crystalline phase
  • Lithium