People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mendes, Manuel Joao
Universidade Nova de Lisboa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Aerogel cathodes for electrochemical CO2 reduction [Comunicação oral]
- 2024Thermal-Carrier-Escape Mitigation in a Quantum-Dot-In-Perovskite Intermediate Band Solar Cell via Bandgap Engineeringcitations
- 2024Surface modification of halide perovskite using EDTA-complexed SnO2 as electron transport layer in high performance solar cellscitations
- 2023Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporationcitations
- 2023Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaicscitations
- 2023Thermal-Carrier-Escape Mitigation in a Quantum-Dot-In-Perovskite Intermediate Band Solar Cell via Bandgap Engineeringcitations
- 2022Copper-Arsenic-Sulfide Thin-Films from Local Raw Materials Deposited via RF Co-Sputtering for Photovoltaicscitations
- 2022Observation of Grain Boundary Passivation and Charge Distribution in Perovskite Films Improved with Anti-solvent Treatmentcitations
- 2020Photonic-structured TCO front contacts yielding optical and electrically enhanced thin-film solar cellscitations
- 2019All-Thin-Film Perovskite/C-Si Four-Terminal Tandems: Interlayer and Intermediate Contacts Optimizationcitations
- 2019Wave-optical front structures on silicon and perovskite thin-film solar cellscitations
- 2019Lightwave trapping in thin film solar cells with improved photonic-structured front contactscitations
- 2019Photonic-structured TiO 2 for high-efficiency, flexible and stable Perovskite solar cellscitations
- 2018Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layercitations
- 2018Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cellscitations
- 2017Low-temperature spray-coating of high-performing ZnOcitations
- 2016Influence of the Substrate on the Morphology of Self-Assembled Silver Nanoparticles by Rapid Thermal Annealingcitations
- 2014Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectorscitations
Places of action
Organizations | Location | People |
---|
article
Influence of the Substrate on the Morphology of Self-Assembled Silver Nanoparticles by Rapid Thermal Annealing
Abstract
<p>Metal nanoparticles are of great interest for light trapping in photovoltaics. They are usually incorporated in the rear electrode of solar cells, providing strong light scattering at their surface plasmon resonances. In most cases, the nanoparticles are self-assembled by solid-state dewetting over a transparent conductive oxide (TCO) layer incorporated in the cell's rear electrode. Up to now, this process has been optimized mainly by tuning the thermal annealing parameters responsible for dewetting, or the thickness of the precursor metallic layer; but little attention has been paid to the influence of the underlying TCO layer properties on the morphology of the nanoparticles formed, which is the focus of the present article. This work investigates Ag nanoparticles structures produced on distinct surfaces by a simple, fast and highly reproducible method employing rapid thermal annealing. The results indicate that both the thermal conductivity and surface roughness of the TCO layer play a determinant role on the morphology of the nanostructures formed. This is of particular relevance, since we show in the study performed that the parasitic absorption of these Ag nanostructures is reduced, while the scattering is enhanced when the Ag nanostructures are formed on TCO layers with the highest conductivity and the lowest surface roughness (∼1 nm). These results unveil novel possibilities for the improvement of plasmonic nanostructures fabricated by thermal dewetting, via the careful adjustment of the physical properties of the underlying surface.</p>