People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
García Lastra, Juan Maria
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytescitations
- 2022Dual Role of Mo 6 S 8 in Polysulfide Conversion and Shuttle for Mg–S Batteriescitations
- 2021Computational design of ductile magnesium alloy anodes for magnesium ion batteriescitations
- 2020Multi‐Electron Reactions Enabled by Anion‐Based Redox Chemistry for High‐Energy Multivalent Rechargeable Batteriescitations
- 2020Multi-electron reactions enabled by anion-participated redox chemistry for high-energy multivalent rechargeable batteriescitations
- 2018Comparative DFT+U and HSE Study of the Oxygen Evolution Electrocatalysis on Perovskite Oxidescitations
- 2018Machine learning-based screening of complex molecules for polymer solar cellscitations
- 2016A Density Functional Theory Study of the Ionic and Electronic Transport Mechanisms in LiFeBO3 Battery Electrodescitations
- 2016A Density Functional Theory Study of the Ionic and Electronic Transport Mechanisms in LiFeBO 3 Battery Electrodescitations
- 2015Effect of Sb Segregation on Conductance and Catalytic Activity at Pt/Sb-Doped SnO2 Interface: A Synergetic Computational and Experimental Studycitations
- 2015Effect of Sb Segregation on Conductance and Catalytic Activity at Pt/Sb-Doped SnO 2 Interface: A Synergetic Computational and Experimental Studycitations
- 2013Stability and bandgaps of layered perovskites for one- and two-photon water splittingcitations
- 2012Understanding Periodic Dislocations in 2D Supramolecular Crystals: The PFP/Ag(111) Interfacecitations
- 2010Optical to ultraviolet spectra of sandwiches of benzene and transition metal atoms: Time dependent density functional theory and many-body calculationscitations
- 2010Graphene on metals: A van der Waals density functional studycitations
Places of action
Organizations | Location | People |
---|
article
A Density Functional Theory Study of the Ionic and Electronic Transport Mechanisms in LiFeBO3 Battery Electrodes
Abstract
Lithium iron borate is an attractive cathode material for Li-ion batteries due to its high specific capacity and low-cost, earth-abundant constituents. However, experiments have observed poor electrochemical performance due to the formation of an intermediate phase, that is, Li<sub>x</sub>FeBO<sub>3</sub>, which leads to large overvoltages at the beginning of charge. Using a convex-hull analysis, based on Hubbard-corrected density functional theory (DFT+U), we identify this intermediate phase as Li<sub>0.5</sub>FeBO<sub>3</sub>. Moreover, we show by means of the nudged elastic band (NEB) method, that the origin of these adverse electrochemical effects can be explained by an intrinsically low Li-ion and electron/hole-polaron mobility in Li<sub>0.5</sub>FeBO<sub>3</sub> due to high activation barriers for both the ionic and electronic transport. These studies include the effects of the experimentally reported commensurate modulation. We have also investigated the Li-ion/hole diffusion through the interface between Li<sub>0.5</sub>FeBO<sub>3</sub> and LiFeBO<sub>3</sub>, which is found not to result in additional kinetic limitations from Li diffusion across the intraparticle interfaces. These findings suggest that the experimentally observed diminished performance associated with the formation of intermediate phases is linked to the intrinsically poor properties of the Li<sub>0.5</sub>FeBO<sub>3</sub> phase rather than to the presence of interfaces between different phases.