People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hofmann, Stephan
University of Cambridge
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (46/46 displayed)
- 2024Controlled Fabrication of Native Ultra-Thin Amorphous Gallium Oxide From 2D Gallium Sulfide for Emerging Electronic Applications
- 2023Fast Twist Angle Mapping of Bilayer Graphene Using Spectroscopic Ellipsometric Contrast Microscopy.
- 2022Defect seeded remote epitaxy of GaAs films on graphene.
- 2021Giant photoluminescence enhancement in MoSe2 monolayers treated with oleic acid ligands.
- 2021Piezoelectric materials for energy harvesting and sensing applicationscitations
- 2021Rational Passivation of Sulfur Vacancy Defects in Two-Dimensional Transition Metal Dichalcogenidescitations
- 2021Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials
- 2021Rational Passivation of Sulfur Vacancy Defects in Two-Dimensional Transition Metal Dichalcogenides.
- 2021Piezoelectic Materials for energy harvesting and sensing applications: roadmap for future smart materialscitations
- 2020High-Throughput Electrical Characterization of Nanomaterials from Room to Cryogenic Temperatures.
- 2020High-Throughput Electrical Characterization of Nanomaterials from Room to Cryogenic Temperatures.
- 2020Integrated Wafer Scale Growth of Single Crystal Metal Films and High Quality Graphene.
- 2020High-throughput electrical characterization of nanomaterials from room to cryogenic temperaturescitations
- 2020Understanding metal organic chemical vapour deposition of monolayer WS2: the enhancing role of Au substrate for simple organosulfur precursors.
- 2020Integrated wafer scale growth of single crystal metal films and high quality graphenecitations
- 2020Graphene-passivated nickel as an efficient hole-injecting electrode for large area organic semiconductor devicescitations
- 2020Understanding metal organic chemical vapour deposition of monolayer WS<sub>2</sub>: the enhancing role of Au substrate for simple organosulfur precursors.
- 2020Catalytically mediated epitaxy of 3D semiconductors on van der Waals substratescitations
- 2019Spectrally Resolved Photodynamics of Individual Emitters in Large-Area Monolayers of Hexagonal Boron Nitridecitations
- 2019Enhancing Photoluminescence and Mobilities in WS2 Monolayers with Oleic Acid Ligands.
- 2019Spectrally Resolved Photodynamics of Individual Emitters in Large-Area Monolayers of Hexagonal Boron Nitride.
- 2018Non-destructive Thickness Mapping of Wafer-Scale Hexagonal Boron Nitride Down to a Monolayercitations
- 2018Compressive Behavior and Failure Mechanisms of Freestanding and Composite 3D Graphitic Foamscitations
- 2018Reduced Graphene Oxide as a Monolithic Multifunctional Conductive Binder for Activated Carbon Supercapacitors.
- 2018Insulator-to-Metallic Spin-Filtering in 2D-Magnetic Tunnel Junctions Based on Hexagonal Boron Nitridecitations
- 2018Insulator-to-Metallic Spin-Filtering in 2D-Magnetic Tunnel Junctions Based on Hexagonal Boron Nitridecitations
- 2017Engineering the Photoresponse of InAs Nanowires.
- 2017Engineering the Photoresponse of InAs Nanowirescitations
- 2017Chemical vapour deposition of freestanding sub-60 nm graphene gyroidscitations
- 2016Nanoscale Plasmon-Enhanced Spectroscopy in Memristive Switches.
- 2016In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocomposites.
- 2016Controlling nanowire growth through electric field-induced deformation of the catalyst dropletcitations
- 2016In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocompositescitations
- 2016In Situ Graphene Growth Dynamics on Polycrystalline Catalyst Foilscitations
- 2016Time Evolution of the Wettability of Supported Graphene under Ambient Air Exposurecitations
- 2015Influence of packing density and surface roughness of vertically-aligned carbon nanotubes on adhesive properties of gecko-inspired mimetics.
- 2014Bio-inspired hierarchical polymer fiber-carbon nanotube adhesivescitations
- 2014The role of the sp2:sp3 substrate content in carbon supported nanotube growthcitations
- 2014CVD growth of carbon nanostructures from zirconia: mechanisms and a method for enhancing yield.
- 2014The role of the sp 2 :sp 3 substrate content in carbon supported nanotube growthcitations
- 2014The influence of intercalated oxygen on the properties of graphene on polycrystalline Cu under various environmental conditionscitations
- 2014Nitrogen controlled iron catalyst phase during carbon nanotube growthcitations
- 2013Catalyst composition and impurity-dependent kinetics of nanowire heteroepitaxy.
- 2012The phase of iron catalyst nanoparticles during carbon nanotube growthcitations
- 2011In Situ Characterization of Alloy Catalysts for Low-Temperature Graphene Growthcitations
- 2003Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor depositioncitations
Places of action
Organizations | Location | People |
---|
article
In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocomposites
Abstract
Nanocomposite thin films comprised of metastable metal carbides in a carbon matrix have a wide variety of applications ranging from hard coatings to magnetics and energy storage and conversion. While their deposition using nonequilibrium techniques is established, the understanding of the dynamic evolution of such metastable nanocomposites under thermal equilibrium conditions at elevated temperatures during processing and during device operation remains limited. Here, we investigate sputter-deposited nanocomposites of metastable nickel carbide (Ni3C) nanocrystals in an amorphous carbon (a-C) matrix during thermal postdeposition processing via complementary in situ X-ray diffractometry, in situ Raman spectroscopy, and in situ X-ray photoelectron spectroscopy. At low annealing temperatures (300 °C) we observe isothermal Ni3C decomposition into face-centered-cubic Ni and amorphous carbon, however, without changes to the initial finely structured nanocomposite morphology. Only for higher temperatures (400–800 °C) Ni-catalyzed isothermal graphitization of the amorphous carbon matrix sets in, which we link to bulk-diffusion-mediated phase separation of the nanocomposite into coarser Ni and graphite grains. Upon natural cooling, only minimal precipitation of additional carbon from the Ni is observed, showing that even for highly carbon saturated systems precipitation upon cooling can be kinetically quenched. Our findings demonstrate that phase transformations of the filler and morphology modifications of the nanocomposite can be decoupled, which is advantageous from a manufacturing perspective. Our in situ study also identifies the high carbon content of the Ni filler crystallites at all stages of processing as the key hallmark feature of such metal–carbon nanocomposites that governs their entire thermal evolution. In a wider context, we also discuss our findings with regard to the much debated potential role of metastable Ni3C as a catalyst phase in graphene and carbon nanotube growth.