People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Macfarlane, Douglas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2023High performance acidic water electrooxidation catalysed by manganese–antimony oxides promoted by secondary metalscitations
- 2018Ionic liquid electrolytes supporting high energy density in sodium-ion batteries based on sodium vanadium phosphate compositescitations
- 2018The electrochemistry and performance of cobalt-based redox couples for thermoelectrochemical cellscitations
- 2018The effect of cation chemistry on physicochemical behaviour of superconcentrated NaFSI based ionic liquid electrolytes and the implications for Na battery performancecitations
- 2017Properties of High Na-Ion Content N-Propyl-N-Methylpyrrolidinium Bis(Fluorosulfonyl)Imide -Ethylene Carbonate Electrolytescitations
- 2017Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquidscitations
- 2017Metal-free black silicon for solar-powered hydrogen generationcitations
- 2016Novel Na+ ion diffusion mechanism in mixed organic-inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cellscitations
- 2016Reduction of oxygen in a trialkoxy ammonium-based ionic liquid and the role of watercitations
- 2016Stable zinc cycling in novel alkoxy-ammonium based ionic liquid electrolytescitations
- 2016Inorganic-organic ionic liquid electrolytes enabling high energy-density metal electrodes for energy storagecitations
- 2016Unexpected effect of tetraglyme plasticizer on lithium ion dynamics in PAMPS based ionomerscitations
- 2016Investigating non-fluorinated anions for sodium battery electrolytes based on ionic liquidscitations
- 2016In-situ-activated N-doped mesoporous carbon from a protic salt and its performance in supercapacitorscitations
- 2016Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid-solvent mixturescitations
- 2016Recent developments in environment-friendly corrosion inhibitors for mild steel
- 2015Spin-crossover, mesomorphic and thermoelectrical properties of cobalt(II) complexes with alkylated N3-Schiff basescitations
- 2015Evaluation of electrochemical methods for determination of the seebeck coefficient of redox electrolytescitations
- 2015Characterisation of ion transport in sulfonate based ionomer systems containing lithium and quaternary ammonium cationscitations
- 2012Electrodeposited MnOx films from ionic liquid for electrocatalytic water oxidationcitations
- 2012Electrochemical etching of aluminium alloy in ionic liquids
- 2011Anodising AA5083 aluminium alloy using ionic liquids
- 2011Electrochemical reactivity of trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate ionic liquid on glassy carbon and AZ31 magnesium alloycitations
- 2011On the use of organic ionic plastic crystals in all solid-state lithium metal batteriescitations
- 2011Anodic oxidation of AZ31 Mg alloy in ionic liquid
- 2011Crystallisation kinetics of some archetypal ionic liquidscitations
- 2011Transport properties and phase behaviour in binary and ternary ionic liquid electrolyte systems of interest in lithium batteriescitations
- 2010Potentiostatic control of ionic liquid surface film formation on ZE41 magnesium alloycitations
- 2010Long-term structural and chemical stability of DNA in hydrated ionic liquidscitations
- 2010An azo-spiro mixed ionic liquid electrolyte for lithium metal- LiFePO 4 batteriescitations
- 2010Characterization of the magnesium alloy AZ31 surface in the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethanesulfonyl)amide
- 2010Proton transport properties in Zwitterion blends with Bronsted acidscitations
- 2000Experimental and theoretical investigations of the effect of deprotonation on electronic spectra and reversible potentials of photovoltaic sensitizerscitations
Places of action
Organizations | Location | People |
---|
article
Novel Na+ ion diffusion mechanism in mixed organic-inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cells
Abstract
<p>Ambient temperature sodium batteries hold the promise of a new generation of high energy density, low-cost energy storage technologies. Particularly challenging in sodium electrochemistry is achieving high stability at high charge/discharge rates. We report here mixtures of inorganic/organic cation fluorosulfonamide (FSI) ionic liquids that exhibit unexpectedly high Na<sup>+</sup> transference numbers due to a structural diffusion mechanism not previously observed in this type of electrolyte. The electrolyte can therefore support high current density cycling of sodium. We investigate the effect of NaFSI salt concentration in methylpropylpyrrolidinium (C<sub>3</sub>mpyr) FSI ionic liquid (IL) on the reversible plating and dissolution of sodium metal, both on a copper electrode and in a symmetric Na/Na metal cell. NaFSI is highly soluble in the IL allowing the preparation of mixtures that contain very high Na contents, greater than 3.2 mol/kg (50 mol %) at room temperature. Despite the fact that overall ion diffusivity decreases substantially with increasing alkali salt concentration, we have found that these high Na<sup>+</sup> content electrolytes can support higher current densities (1 mA/cm<sup>2</sup>) and greater stability upon continued cycling. EIS measurements indicate that the interfacial impedance is decreased in the high concentration systems, which provides for a particularly low-resistance solid-electrolyte interphase (SEI), resulting in faster charge transfer at the interface. Na<sup>+</sup> transference numbers determined by the Bruce-Vincent method increased substantially with increasing NaFSI content, approaching >0.3 at the saturation concentration limit which may explain the improved performance. NMR spectroscopy, PFG diffusion measurements, and molecular dynamics simulations reveal a changeover to a facile structural diffusion mechanism for sodium ion transport at high concentrations in these electrolytes.</p>