Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kok, John M. M. De

  • Google
  • 4
  • 10
  • 173

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2017Interface strength and degradation of adhesively bonded porous aluminum oxides43citations
  • 2017Towards Cr(VI)-free anodization of aluminum alloys for aerospace adhesive bonding applications65citations
  • 2017Adhesive bonding and corrosion performance investigated as a function of auminum oide chemistry and adhesives17citations
  • 2015XPS Analysis of the Surface Chemistry and Interfacial Bonding of Barrier-Type Cr(VI)-Free Anodic Oxides48citations

Places of action

Chart of shared publication
Terryn, Herman
4 / 124 shared
Gudla, Visweswara Chakravarthy
1 / 41 shared
Abrahami, Shoshan T.
1 / 3 shared
Ambat, Rajan
1 / 142 shared
Mol, Johannes M. C.
2 / 12 shared
Abrahami, Shoshan
3 / 10 shared
Mol, Arjan
1 / 64 shared
Hauffman, T.
1 / 2 shared
Mol, Johannes M.
1 / 1 shared
Hauffman, Tom
1 / 59 shared
Chart of publication period
2017
2015

Co-Authors (by relevance)

  • Terryn, Herman
  • Gudla, Visweswara Chakravarthy
  • Abrahami, Shoshan T.
  • Ambat, Rajan
  • Mol, Johannes M. C.
  • Abrahami, Shoshan
  • Mol, Arjan
  • Hauffman, T.
  • Mol, Johannes M.
  • Hauffman, Tom
OrganizationsLocationPeople

article

XPS Analysis of the Surface Chemistry and Interfacial Bonding of Barrier-Type Cr(VI)-Free Anodic Oxides

  • Abrahami, Shoshan
  • Terryn, Herman
  • Kok, John M. M. De
  • Mol, Johannes M.
  • Hauffman, Tom
Abstract

In the transition to environmental friendly pretreatment of aerospace aluminum alloys, chromic acid anodizing (CAA) is being replaced by sulfuric acid (SAA), phosphoric acid (PAA), or phosphoric-sulfuric acid (PSA) anodizing. While generally the main concern is controlling the film morphology, such as the pore diameter, oxide-, and barrier layer thickness, little is known on how the anodic oxide chemistry affects the interactions at the interface upon adhesive bonding. To study the link between surface chemistry and interfacial bonding, featureless oxides were prepared by stopping the anodizing during the formation of the barrier layer. A model was developed to quantify the relative amounts of OH–, PO43–, and SO42– by curve-fitting the XPS data. Calculations showed that almost 40% of the surface species in PAA oxide are phosphates (PO43–), whereas about 15% are sulfates (SO42) in SAA. When both anions were present in the electrolyte, phosphate incorporation was inhibited. Studies of the interaction between this set of Cr(VI)-free oxides and diethylenetriamine (DETA)—an amine curing-agent for epoxy resin—showed that all oxides interact with the nitrogen of DETA. However, larger ratios of Lewis-like acid–base bonding between the amine electron pair and the acidic hydroxyl on phosphate surface sites were observed.

Topics
  • impedance spectroscopy
  • pore
  • morphology
  • surface
  • x-ray photoelectron spectroscopy
  • aluminium
  • Nitrogen
  • resin
  • amine
  • curing