People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ten Elshof, Johan E.
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Phase distribution regulation of formamidinium-based quasi-2D perovskites through solution engineering
- 2023Correlated Metals Transparent Conductors with High UV to Visible Transparency on Amorphous Substratescitations
- 2023Disentangling Hot Carrier Decay and the Nature of Low-n to High-n Transfer Processes in Quasi-Two-Dimensional Layered Perovskitescitations
- 2022Influence of the Template Layer on the Structure and Ferroelectric Properties of PbZr<sub>0.52</sub>Ti<sub>0.48</sub>O<sub>3</sub> Filmscitations
- 2020Tailoring Vanadium Dioxide Film Orientation Using Nanosheets: a Combined Microscopy, Diffraction, Transport, and Soft X‐Ray in Transmission Studycitations
- 2020Tailoring Vanadium Dioxide Film Orientation Using Nanosheets: a Combined Microscopy, Diffraction, Transport, and Soft X‐Ray in Transmission Studycitations
- 2020Tailoring Vanadium Dioxide Film Orientation Using Nanosheets : a Combined Microscopy, Diffraction, Transport, and Soft X-Ray in Transmission Studycitations
- 2018Micropatterned 2D Hybrid Perovskite Thin Films with Enhanced Photoluminescence Lifetimescitations
- 2017Tuning of large piezoelectric response in nanosheet-buffered lead zirconate titanate films on glass substratescitations
- 2017Influence of Solution Properties and Process Parameters on the Formation and Morphology of YSZ and NiO Ceramic Nanofibers by Electrospinningcitations
- 2011Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubescitations
Places of action
Organizations | Location | People |
---|
article
Disentangling Hot Carrier Decay and the Nature of Low-n to High-n Transfer Processes in Quasi-Two-Dimensional Layered Perovskites
Abstract
Quasi-two-dimensional (2D) metal halide perovskites (MHPs) are promising photovoltaic (PV) materials because of their impressive optical and optoelectronic properties and improved stability compared to their 3D counterparts. The presence of domains with varying numbers of inorganic layers between the organic spacers (n-phases), each with different bandgaps, makes the photoinduced carrier dynamics in films of these materials complex and intriguing. Existing interpretations of the ultrafast femto- or picosecond spectroscopy data have been inconsistent, most of them focusing either on exciton/charge transfer from low-n to high-n phases or on hot carrier cooling, but not combined. Here, we present a comprehensive study of the carrier dynamics in the Dion-Jacobson type (PDMA)(MA)(n−1)PbnI(3n+1) (PDMA = 1,4-phenylenedimethylammonium, MA = methylammonium) perovskite, stoichiometrically prepared as ⟨n⟩ = 5. Within the film, a coexistence of various n-phases is observed instead of solely the n = 5 phase, resulting in an interesting energy landscape for the motion of excitons and charge carriers. We disentangle hot carrier cooling from exciton transfer between low-n and high-n phases using ultrafast time-resolved photoluminescence and transient absorption spectroscopy. Photophysical modeling by target analysis shows that carrier cooling occurring on a subpicosecond time scale is followed by exciton transfer from low-n into high-n phases in ca. 35 ps when the film is excited by 532 or 490 nm light. Carriers in the high-n phase are much longer lived and decay in a ns time window. Overall, our results provide a comprehensive understanding of the photophysics of this material, which helps to optimize quasi-2D MHP materials for a new generation of PV devices.