People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lauritsen, Jeppe Vang
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Atomic-Scale Site Characterization of Cu-Zn Exchange on Cu(111)citations
- 2023Steering carbon dioxide reduction toward C–C coupling using copper electrodes modified with porous molecular filmscitations
- 2023The interface of in-situ grown single-layer epitaxial MoS2 on SrTiO3(001) and (111)citations
- 2022Iron carbide formation on thin iron films grown on Cu(1 0 0)citations
- 2022WO3 Monomers Supported on Anatase TiO2(101), −(001), and Rutile TiO2(110)citations
- 2022Can the CO 2 Reduction Reaction Be Improved on Cu:Selectivity and Intrinsic Activity of Functionalized Cu Surfacescitations
- 2022Can the CO2Reduction Reaction Be Improved on Cucitations
- 2021Nanoscale Chevrel-Phase Mo6S8Prepared by a Molecular Precursor Approach for Highly Efficient Electrocatalysis of the Hydrogen Evolution Reaction in Acidic Mediacitations
- 2020Molecular Nanowire Bonding to Epitaxial Single-Layer MoS2 by an On-Surface Ullmann Coupling Reactioncitations
- 2020Cubes on a string:a series of linear coordination polymers with cubane-like nodes and dicarboxylate linkerscitations
- 2019Anisotropic iron-doping patterns in two-dimensional cobalt oxide nanoislands on Au(111)citations
- 2019Structural and electronic properties of Fe dopants in cobalt oxide nanoislands on Au(111)citations
- 2018Phase Transitions of Cobalt Oxide Bilayers on Au(111) and Pt(111)citations
- 2018Topotactic Growth of Edge-Terminated MoS 2 from MoO 2 Nanocrystalscitations
- 2018Topotactic Growth of Edge-Terminated MoS2 from MoO2 Nanocrystalscitations
- 2017Gold-supported two-dimensional cobalt oxyhydroxide (CoOOH) and multilayer cobalt oxide islandscitations
- 2017Edge reactivity and water-assisted dissociation on cobalt oxide nanoislandscitations
- 2015Electronic Structure of Epitaxial Single-Layer MoS2citations
- 2015Noncontact AFM Imaging of Atomic Defects on the Rutile TiO2 (110) Surfacecitations
- 2015Electronic structure of epitaxial single-layer MoS2citations
- 2015Synthesis of Epitaxial Single-Layer MoS2 on Au(111)citations
- 2014Structure and Electronic Properties of In Situ Synthesized Single-Layer MoS2 on a Gold Surfacecitations
- 2014Structure and Electronic Properties of In Situ Synthesized Single-Layer MoS 2 on a Gold Surfacecitations
- 2011Atomic-scale non-contact AFM studies of alumina supported nanoparticles
- 2011Stabilization Principles for Polar Surfaces of ZnOcitations
Places of action
Organizations | Location | People |
---|
article
Atomic-Scale Site Characterization of Cu-Zn Exchange on Cu(111)
Abstract
An accurate understanding of the physicochemical properties of bimetallic heterogeneous catalysts relies on atomic-scale knowledge of the surface morphology and the atomic distribution. Alloys of Cu and Zn created during catalyst operation are frequently studied and debated in relation to a description of the active phase of Cu/ZnO/Al2O3 methanol synthesis catalysts. This makes it relevant to build a better understanding of Zn dissolution pathways in Cu surfaces and the resulting surface morphology. Herein, we use scanning tunneling microscopy to investigate surface morphology and the distinct atom site configurations of Zn and Cu on Cu(111) resulting from room-Temperature Zn exchange from a Zn monolayer into the topmost layer of Cu(111). A gradual dissolution of Zn islands induces an extensive element intermixing at room temperature, resulting in Zn alloying at Cu terrace lattice sites. In addition, we observe and address an interlayer element exchange between the Zn submonolayers in direct contact with Cu. The exchange process is driven by lattice strain and is strongly facilitated at the perimeter of Zn edges. The STM contrast associated with the resulting intermixed sites is reported together with the simulation of these sites based on density functional theory, showing that imaging of isolated Zn sites in Cu(111) is sensitive to the STM tip state. The findings provide new insight into the atomic-scale exchange for Zn/Cu bimetallic surfaces, which may be used onward for understanding the debated surface morphology that develops during reductive activation and alloy formation in the Cu/ZnO/Al2O3 methanol synthesis catalyst.