People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Holler, Mirko
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Phase-separated polymer blends for controlled drug delivery by tuning morphologycitations
- 20234D nanoimaging of early age cement hydrationcitations
- 20233D-Imaging of synapses in neuronal tissues with synchrotron X-ray ptychographycitations
- 2023Understanding the microstructure of a core–shell anode catalyst layer for polymer electrolyte water electrolysiscitations
- 2022Near-infrared analysis of nanofibrillated cellulose aerogel manufacturingcitations
- 2022Near-infrared analysis of nanofibrillated cellulose aerogel manufacturingcitations
- 2022Evolution of Hierarchically Porous Nickel Alumina Catalysts Studied by X‐Ray Ptychographycitations
- 20224D Early Age Cement Hydration Analysis by Ptychographic X-ray Computed Tomography and Machine Learning Segmentation
- 2022Alumina-Supported NiMo Hydrotreating CatalystsAspects of 3D Structure, Synthesis, and Activitycitations
- 2021Thermal History of Matrix Forsterite Grains from Murchison Based on High-resolution Tomographycitations
- 2021Quantitative analysis of cementitious materials by X-ray ptychographic nanotomography
- 2021Quantitative analysis of cementitious materials by X-ray ptychographic nanotomography
- 2019Quantitative disentanglement of nanocrystalline phases in cement pastes by synchrotron ptychographic X-ray tomographycitations
- 2019Quantitative disentanglement of nanocrystalline phases in cement pastes by synchrotron ptychographic X-ray tomography
- 2018Small-angle X-ray scattering tensor tomography : Model of the three-dimensional reciprocal-space map, reconstruction algorithm and angular sampling requirementscitations
- 2018Photonic materials for high-temperature applications: synthesis and characterization by X-ray ptychographic tomography
- 2016Internal structure of sponge glass fiber revealed by ptychographic nanotomographycitations
Places of action
Organizations | Location | People |
---|
article
Alumina-Supported NiMo Hydrotreating CatalystsAspects of 3D Structure, Synthesis, and Activity
Abstract
Preparation conditions have a vital effect on the structure of alumina-supported hydrodesulfurization (HDS) catalysts. To explore this effect, we prepared two NiMoS/Al2O3 catalyst samples with the same target composition using different chemical sources and characterizing the oxidic NiMo precursors and sulfided and spent catalysts to understand the influence of catalyst structure on performance. The sample prepared from ammonium heptamolybdate and nickel nitrate (sample A) contains Mo in the oxidic precursor predominantly in tetrahedral coordination in the form of crystalline domains, which show low reducibility and strong metal–support interactions. This property influences the sulfidation process such that the sulfidation processes of Ni and Mo occur tendentially separately with a decreased efficiency to form active Ni–Mo–S particles. Moreover, inactive unsupported MoS2 particles or isolated NiSx species are formed, which are either washed off during catalytic reaction or aggregated to larger particles as seen in scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy (STEM/EDX). The oxidic precursor of the sample synthesized using nickel carbonate and molybdenum trioxide as metal sources (sample B), however, contains Mo in octahedral coordination and shows higher reducibility of the metal species as well as weaker metal–support interactions than that of sample A; these properties allow an efficient sulfidation of Mo and Ni such that formation of active Ni–Mo–S particles is the main product. Ptychographic X-ray computed tomography (PXCT) and STEM and EDX measurements show that the structure formed during sulfidation is stable under operation conditions. The structural differences explain the HDS activity difference between these two samples and explain why sample B is much active than sample A.