People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mendes, Manuel Joao
Universidade Nova de Lisboa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Aerogel cathodes for electrochemical CO2 reduction [Comunicação oral]
- 2024Thermal-Carrier-Escape Mitigation in a Quantum-Dot-In-Perovskite Intermediate Band Solar Cell via Bandgap Engineeringcitations
- 2024Surface modification of halide perovskite using EDTA-complexed SnO2 as electron transport layer in high performance solar cellscitations
- 2023Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporationcitations
- 2023Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaicscitations
- 2023Thermal-Carrier-Escape Mitigation in a Quantum-Dot-In-Perovskite Intermediate Band Solar Cell via Bandgap Engineeringcitations
- 2022Copper-Arsenic-Sulfide Thin-Films from Local Raw Materials Deposited via RF Co-Sputtering for Photovoltaicscitations
- 2022Observation of Grain Boundary Passivation and Charge Distribution in Perovskite Films Improved with Anti-solvent Treatmentcitations
- 2020Photonic-structured TCO front contacts yielding optical and electrically enhanced thin-film solar cellscitations
- 2019All-Thin-Film Perovskite/C-Si Four-Terminal Tandems: Interlayer and Intermediate Contacts Optimizationcitations
- 2019Wave-optical front structures on silicon and perovskite thin-film solar cellscitations
- 2019Lightwave trapping in thin film solar cells with improved photonic-structured front contactscitations
- 2019Photonic-structured TiO 2 for high-efficiency, flexible and stable Perovskite solar cellscitations
- 2018Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layercitations
- 2018Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cellscitations
- 2017Low-temperature spray-coating of high-performing ZnOcitations
- 2016Influence of the Substrate on the Morphology of Self-Assembled Silver Nanoparticles by Rapid Thermal Annealingcitations
- 2014Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectorscitations
Places of action
Organizations | Location | People |
---|
article
Observation of Grain Boundary Passivation and Charge Distribution in Perovskite Films Improved with Anti-solvent Treatment
Abstract
Owing to the polycrystalline nature of hybrid perovskite thin films, the trap states in grain boundaries (GBs) introduced by charged defects play an important role in determining the charge collection efficiency and have a significant impact on their optoelectronic properties. Herein, we show the direct imaging of the GB passivation of perovskite films through an anti-solvent treatment and the anomalous charge distribution across the films due to the passivation. The downward band bending at the GBs has been observed at nanometer scale using Kelvin probe force microscopy. This revealed that a hot chlorobenzene treatment decreases the band bending at GBs and allows more homogeneous electronic properties throughout the film after passivation. Conductive atomic force microscopy has been employed to show the charge transport mapping across the films. It was found that the passivation effect not only changes the surface potential at GBs but also enhances the overall charge collection efficiency of the film. Our work provides a solution to reduce the density of charge defects at GBs through hot anti-solvent treatment, which is demonstrated to be a promising strategy to decrease the recombination losses at GBs and, thereby, increase the electronic quality of the perovskite films as well as enhance the device performance.