People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tukiainen, Antti
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Bridging the gap between surface physics and photonicscitations
- 2024Ti3+ Self-Doping-Mediated Optimization of TiO2 Photocatalyst Coating Grown by Atomic Layer Depositioncitations
- 2022Insights into Tailoring of Atomic Layer Deposition Grown TiO2 as Photoelectrode Coating
- 2022Luminescent (Er,Ho)2O3 thin films by ALD to enhance the performance of silicon solar cellscitations
- 2022Low-Temperature Route to Direct Amorphous to Rutile Crystallization of TiO2Thin Films Grown by Atomic Layer Depositioncitations
- 2022Tunable Ti3+-Mediated Charge Carrier Dynamics of Atomic Layer Deposition-Grown Amorphous TiO2citations
- 2021Comparison of the heat-treatment effect on carrier dynamics in TiO2 thin films deposited by different methodscitations
- 2021Luminescent (Er,Ho)2O3 thin films by ALD to enhance the performance of silicon solar cellscitations
- 2021Interface Engineering of TiO2 Photoelectrode Coatings Grown by Atomic Layer Deposition on Siliconcitations
- 2020Optimization of photogenerated charge carrier lifetimes in ald grown tio2 for photonic applicationscitations
- 2019Thermophotonic cooling in GaAs based light emitterscitations
- 2019Highly efficient charge separation in model Z-scheme TiO2/TiSi2/Si photoanode by micropatterned titanium silicide interlayercitations
- 2019Observation of local electroluminescent cooling and identifying the remaining challenges
- 2018Surface doping of GaxIn1−xAs semiconductor crystals with magnesiumcitations
- 2017Structured metal/polymer back reflectors for III-V solar cells
- 2016High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD techniquecitations
- 2016Determination of composition and energy gaps of GaInNAsSb layers grown by MBEcitations
- 2016Optical Energy Transfer and Loss Mechanisms in Coupled Intracavity Light Emitterscitations
- 2016Combined MBE-MOCVD process for high-efficiency multijunction solar cells
- 2016High efficiency multijunction solar cells: Electrical and optical properties of the dilute nitride sub-junctions
- 2015Defects in dilute nitride solar cells
- 2015Dilute nitrides for boosting the efficiency of III-V multijunction solar cells
- 2004Effects of rapid thermal annealing on deep levels in n -GaInPcitations
Places of action
Organizations | Location | People |
---|
article
Low-Temperature Route to Direct Amorphous to Rutile Crystallization of TiO2Thin Films Grown by Atomic Layer Deposition
Abstract
The physicochemical properties of titanium dioxide (TiO2) depend strongly on the crystal structure. Compared to anatase, rutile TiO2 has a smaller bandgap, a higher dielectric constant, and a higher refractive index, which are desired properties for TiO2 thin films in many photonic applications. Unfortunately, the fabrication of rutile thin films usually requires temperatures that are too high (>400 °C, often even 600-800 °C) for applications involving, e.g., temperature-sensitive substrate materials. Here, we demonstrate atomic layer deposition (ALD)-based fabrication of anatase and rutile TiO2 thin films mediated by precursor traces and oxide defects, which are controlled by the ALD growth temperature when using tetrakis(dimethylamido)titanium(IV) (TDMAT) and water as precursors. Nitrogen traces within amorphous titania grown at 100 °C inhibit the crystal nucleation until 375 °C and stabilize the anatase phase. In contrast, a higher growth temperature (200 °C) leads to a low nitrogen concentration, a high degree of oxide defects, and high mass density facilitating direct amorphous to rutile crystal nucleation at an exceptionally low post deposition annealing (PDA) temperature of 250 °C. The mixed-phase (rutile-brookite) TiO2 thin film with rutile as the primary phase forms upon the PDA at 250-500 °C that allows utilization in broad range of TiO2 thin film applications. ; Peer reviewed