People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schnadt, Joachim
Lund University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Bimolecular Reaction Mechanism in the Amido Complex-Based Atomic Layer Deposition of HfO2citations
- 2023Time evolution of surface species during the ALD of high-k oxide on InAscitations
- 2023Time evolution of surface species during the ALD of high-k oxide on InAscitations
- 2022Oxygen relocation during HfO2 ALD on InAscitations
- 2022Role of Temperature, Pressure, and Surface Oxygen Migration in the Initial Atomic Layer Deposition of HfO2on Anatase TiO2(101)citations
- 2022Role of Temperature, Pressure, and Surface Oxygen Migration in the Initial Atomic Layer Deposition of HfO2on Anatase TiO2(101)citations
- 2021How Surface Species Drive Product Distribution during Ammonia Oxidation: An STM and Operando APXPS Studycitations
- 2021How Surface Species Drive Product Distribution during Ammonia Oxidation : An STM and Operando APXPS Studycitations
- 2021How Surface Species Drive Product Distribution during Ammonia Oxidationcitations
- 2020Atomic Layer Deposition of Hafnium Oxide on InAs : Insight from Time-Resolved in Situ Studiescitations
- 2020Atomic Layer Deposition of Hafnium Oxide on InAscitations
- 2019Experimental and theoretical gas phase electronic structure study of tetrakis(dimethylamino) complexes of Ti(IV) and Hf(IV)citations
- 2018In situ characterization of the deposition of anatase TiO2 on rutile TiO2(110)citations
- 2015Covalent immobilization of molecularly imprinted polymer nanoparticles using an epoxy silane.citations
- 2011Pyridine Adsorption on Single-Layer Iron Phthalocyanine on Au(111)citations
- 2009Lack of surface oxide layers and facile bulk oxide formation on Pd(110)citations
- 2004Adsorption and charge-transfer study of bi-isonicotinic acid on in situ-grown anatase TiO2 nanoparticlescitations
- 2003Metalorganic Chemical Vapor Deposition of Anatase Titanium Dioxide on Si: Modifying the Interface by Pre-Oxidation.citations
Places of action
Organizations | Location | People |
---|
article
Role of Temperature, Pressure, and Surface Oxygen Migration in the Initial Atomic Layer Deposition of HfO2on Anatase TiO2(101)
Abstract
<p>The atomic layer deposition of HfO<sub>2</sub>on a TiO<sub>2</sub>(101) surface from tetrakis(dimethylamido)hafnium and water is investigated using a combination of in situ vacuum X-ray photoelectron spectroscopy (XPS) and time-resolved ambient pressure XPS. Precursor pressures and surface temperature are tuned as to map the space state of the deposition. In the initial stages of ALD, a reaction mechanism based on dissociative adsorption dominates over a classic ligand exchange mechanism, typically evoked when metal-amido complexes and water are used as the precursors for metal oxide ALD. Surface species, including a dimethyl ammonium ion and an imine, are identified. It is found that they can be formed only if the active role of the TiO<sub>2</sub>(101) surface is taken into consideration. The temperature of the surface enhances the formation of these species based on an insertion reaction of a hydrogen atom, which then assists the formation of more than the expected monolayer of HfO<sub>2</sub>. A HfO<sub>2</sub>overlayer is produced already during the first half-cycle, enabled by a reduction of the TiO<sub>2</sub>support. Dosing water at high pressure allows hydroxyl formation, which marks the transition toward a well-described ligand exchange reaction type. From the experiments performed, we find that the ALD of HfO<sub>2</sub>at room temperature, performed at high pressure, is mainly based on dissociation and that no side reaction occurs. These insights into the ALD reaction mechanism highlight how in situ studies can help understand how deposition parameters affect the growth of HfO<sub>2</sub>and how the ALD model for transition metal oxide formation from amido complexes and water can be extended.</p>