Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Adamsen, Kræn

  • Google
  • 1
  • 5
  • 13

Aarhus University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022WO3 Monomers Supported on Anatase TiO2(101), −(001), and Rutile TiO2(110)13citations

Places of action

Chart of shared publication
Lammich, Lutz
1 / 5 shared
Lauritsen, Jeppe Vang
1 / 25 shared
Li, Zheshen
1 / 24 shared
Wendt, Stefan
1 / 4 shared
Xu, Tao
1 / 11 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Lammich, Lutz
  • Lauritsen, Jeppe Vang
  • Li, Zheshen
  • Wendt, Stefan
  • Xu, Tao
OrganizationsLocationPeople

article

WO3 Monomers Supported on Anatase TiO2(101), −(001), and Rutile TiO2(110)

  • Adamsen, Kræn
  • Lammich, Lutz
  • Lauritsen, Jeppe Vang
  • Li, Zheshen
  • Wendt, Stefan
  • Xu, Tao
Abstract

<p>We combined scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) to study the molecular and electronic structure of submonolayer tungsten oxide supported on anatase TiO<sub>2</sub>(101), −(001), and rutile TiO<sub>2</sub>(110) surfaces. We found that monomeric tungsten oxide species form on all three TiO<sub>2</sub> surfaces upon mild annealing at 400 K, with a geometry depending on the supporting facet. At ∼600 K, surface diffusion of the monomers sets in, but the monomers remain on the surface without diffusing into the bulk even at higher annealing temperatures. As-deposited tungsten oxide at monolayer coverage is stronger oxidized than thick layers. At elevated temperatures (400-900 K), significant reduction is observed, strongly dependent on the TiO<sub>2</sub> facet employed and bulk defects within the substrate. Among the TiO<sub>2</sub> surfaces studied, the weakest reduction by vacuum annealing was found for tungsten oxide supported on anatase TiO<sub>2</sub>(001).</p>

Topics
  • impedance spectroscopy
  • surface
  • x-ray photoelectron spectroscopy
  • defect
  • annealing
  • tungsten
  • scanning tunneling microscopy