People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Walkley, Brant
University of Sheffield
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Characterisation of calcined waste clays from kaolinite extraction in alkali-activated GGBFS blendscitations
- 2024Basic oxygen furnace (BOF) slag as an additive in sodium carbonate-activated slag cementscitations
- 2023Carbonation Rate of Alkali-Activated Concretes
- 2023RILEM TC 281-CCC Working Group 6
- 2023Evaluation of copper slag and stainless steel slag as replacements for blast furnace slag in binary and ternary alkali-activated cementscitations
- 2023Evaluation of copper slag and stainless steel slag as replacements for blast furnace slag in binary and ternary alkali-activated cementscitations
- 2023Characterisation of alkali-activated stainless steel slag and blast-furnace slag cementscitations
- 2023Characterisation of alkali-activated stainless steel slag and blast-furnace slag cementscitations
- 2022Encapsulation of iodine-loaded metallated silica materials by a geopolymer matrixcitations
- 2022The influence of curing temperature on the strength and phase assemblage of hybrid cements based on GGBFS/FA blendscitations
- 2022Carbonation rate of alkali-activated concretes and high-volume SCM concretescitations
- 2022Report of RILEM TC 267-TRM phase 2: optimization and testing of the robustness of the R3 reactivity tests for supplementary cementitious materialscitations
- 2022Report of RILEM TC 267-TRM phase 2: optimization and testing of the robustness of the R3 reactivity tests for supplementary cementitious materialscitations
- 2021Synthesis of Ca1-xCexZrTi2-2xAl2xO7 zirconolite ceramics for plutonium dispositioncitations
- 2021Synthesis of Ca 1-x Ce x ZrTi 2-2x Al 2x O 7 zirconolite ceramics for plutonium dispositioncitations
- 2021Activator Anion Influences the Nanostructure of Alkali-Activated Slag Cementscitations
- 2020The role of zinc in metakaolin-based geopolymerscitations
- 2020Incorporation of strontium and calcium in geopolymer gelscitations
- 2018Slag and Activator Chemistry Control the Reaction Kinetics of Sodium Metasilicate-Activated Slag Cementscitations
- 2018Reactivity tests for supplementary cementitious materials RILEM TC 267-TRM phase 1citations
- 2018Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1citations
Places of action
Organizations | Location | People |
---|
article
Activator Anion Influences the Nanostructure of Alkali-Activated Slag Cements
Abstract
<p>Alkali-activated materials are promising low-carbon alternatives to Portland cement; however, there remains an absence of a fundamental understanding of the effect of different activator types on their reaction products at the atomic scale. Solid-state 27Al and 29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and 1H-29Si cross-polarization MAS NMR spectroscopy are used to reveal the effect of the activator anion on the nanostructure, cross-linking, and local hydration of aged alkali-activated slag cements. The main reaction product identified is a mixed cross-linked/non-cross-linked sodium-substituted calcium aluminosilicate hydrate (C-(N)-A-S-H) gel with a structure comparable to tobermorite 11 Å. Analysis of cross-polarization kinetics revealed that a higher content of soluble silicate in the activator promoted the incorporation of Al into the aluminosilicate chains of C-(N)-A-S-H gels, charge-balanced preferentially by protons within the gel interlayer. In sodium carbonate-activated slag cements, aluminosilicate chains of C-(N)-A-S-H gels are instead charge-balanced preferentially by Ca2+ or AlV ions. Hydrotalcite was observed as a secondary reaction product independent of the activator used and in higher quantities as the content of sodium carbonate in the activator increases. The presence of soluble silicates in the activator promotes the formation of an Al-rich sodium aluminosilicate hydrate (N-A-S-H) gel which was not identified when using sodium carbonate as the activator. These results demonstrate that the anion type in the activator promotes significant differences in the nanostructure and local hydration of the main binding phases forming in alkali-activated slag cements. This explains the significant differences in properties identified when using these different activators.</p>