Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cai, Rongsheng

  • Google
  • 8
  • 65
  • 159

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2023A Low‐Temperature Synthetic Route Toward a High‐Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysis39citations
  • 2023A Low‐Temperature Synthetic Route Toward a High‐Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysis39citations
  • 2023Copper bioreduction and nanoparticle synthesis by an enrichment culture from a former copper mine3citations
  • 2023A high-resolution versatile focused ion implantation platform for nanoscale engineering5citations
  • 2021High Performance Nanostructured MoS2 Electrodes with Spontaneous Ultra-Low Gold Loading for Hydrogen Evolution15citations
  • 2021High Performance Nanostructured MoS 2 Electrodes with Spontaneous Ultra-Low Gold Loading for Hydrogen Evolution15citations
  • 2021High–performance polymer electrolyte membranes incorporated with 2D silica nanosheets in high–temperature proton exchange membrane fuel cellscitations
  • 2020Synergistic Computational-Experimental Discovery of Highly Selective PtCu Nanocluster Catalysts for Acetylene Semihydrogenation43citations

Places of action

Chart of shared publication
Walton, Alex
4 / 23 shared
Whitehead, George F. S.
2 / 9 shared
Smith, Charles T.
2 / 2 shared
Hazeldine, Kerry
2 / 5 shared
Haigh, Sarah J.
1 / 15 shared
Skelton, Jonathan M.
2 / 30 shared
Binks, David J.
1 / 1 shared
Qu, Jie
2 / 2 shared
Buckingham, Mark A.
2 / 4 shared
De Latour, Hugo
1 / 1 shared
Dryfe, Robert A. W.
1 / 17 shared
Elgendy, Amr
2 / 6 shared
Papaderakis, Athanasios A.
2 / 5 shared
Alam, Firoz
2 / 13 shared
Lewis, David J.
1 / 6 shared
Haigh, Sj
4 / 63 shared
Latour, Hugo De
1 / 1 shared
Binks, Dj
1 / 13 shared
Lewis, Dj
2 / 30 shared
Lloyd, Jonathan R.
1 / 27 shared
Jedyka, Klaudia
1 / 1 shared
Boothman, Christopher
1 / 7 shared
Kimber, Richard
1 / 3 shared
Elizondo, Gretta
1 / 1 shared
Bagshaw, Heath
1 / 5 shared
Coker, Victoria S.
1 / 10 shared
Curry, Rj
1 / 12 shared
Lagator, Matija
1 / 1 shared
Moore, Kl
1 / 21 shared
Li, Kexue
1 / 7 shared
Adshead, Mason
1 / 1 shared
Almutawa, Abdulwahab
1 / 1 shared
Lockyer, Nicholas P.
1 / 17 shared
Bellew, Allen
1 / 2 shared
Gourlay, Cm
1 / 9 shared
Aresta, Gianfranco
1 / 1 shared
Coke, Maddison
1 / 1 shared
Cui, Yi
1 / 6 shared
Sadek Elgendy, Amr Abdelkader Ahmed
1 / 1 shared
Higgins, Eliott
2 / 4 shared
Byrne, Conor
1 / 12 shared
Papaderakis, Athanasios
2 / 6 shared
Byrne, C.
1 / 2 shared
Dryfe, Robert
1 / 12 shared
Ahmed Sadek, Amr
1 / 1 shared
Lewis, David
1 / 16 shared
Haigh, Sarah
2 / 17 shared
Perez-Page, Maria
1 / 1 shared
Byun, Jae Jong
1 / 1 shared
Sahoo, Madhumita
1 / 1 shared
Ji, Zhaoqi
1 / 1 shared
Chen, Jianuo
1 / 1 shared
Guo, Zunmin
1 / 3 shared
Holmes, Stuart
1 / 12 shared
Arbiol, Jordi
1 / 57 shared
Kovnir, Kirill
1 / 13 shared
Akola, Jaakko
1 / 21 shared
Ziouani, Yasmine
1 / 4 shared
Spadaro, Maria Chiara
1 / 24 shared
Ayodele, Olumide Bolarinwa
1 / 2 shared
Wang, Jianguang
1 / 1 shared
Liang, Zhifu
1 / 1 shared
Kolenko, Yury V.
1 / 19 shared
Palmer, Richard E.
1 / 12 shared
Chart of publication period
2023
2021
2020

Co-Authors (by relevance)

  • Walton, Alex
  • Whitehead, George F. S.
  • Smith, Charles T.
  • Hazeldine, Kerry
  • Haigh, Sarah J.
  • Skelton, Jonathan M.
  • Binks, David J.
  • Qu, Jie
  • Buckingham, Mark A.
  • De Latour, Hugo
  • Dryfe, Robert A. W.
  • Elgendy, Amr
  • Papaderakis, Athanasios A.
  • Alam, Firoz
  • Lewis, David J.
  • Haigh, Sj
  • Latour, Hugo De
  • Binks, Dj
  • Lewis, Dj
  • Lloyd, Jonathan R.
  • Jedyka, Klaudia
  • Boothman, Christopher
  • Kimber, Richard
  • Elizondo, Gretta
  • Bagshaw, Heath
  • Coker, Victoria S.
  • Curry, Rj
  • Lagator, Matija
  • Moore, Kl
  • Li, Kexue
  • Adshead, Mason
  • Almutawa, Abdulwahab
  • Lockyer, Nicholas P.
  • Bellew, Allen
  • Gourlay, Cm
  • Aresta, Gianfranco
  • Coke, Maddison
  • Cui, Yi
  • Sadek Elgendy, Amr Abdelkader Ahmed
  • Higgins, Eliott
  • Byrne, Conor
  • Papaderakis, Athanasios
  • Byrne, C.
  • Dryfe, Robert
  • Ahmed Sadek, Amr
  • Lewis, David
  • Haigh, Sarah
  • Perez-Page, Maria
  • Byun, Jae Jong
  • Sahoo, Madhumita
  • Ji, Zhaoqi
  • Chen, Jianuo
  • Guo, Zunmin
  • Holmes, Stuart
  • Arbiol, Jordi
  • Kovnir, Kirill
  • Akola, Jaakko
  • Ziouani, Yasmine
  • Spadaro, Maria Chiara
  • Ayodele, Olumide Bolarinwa
  • Wang, Jianguang
  • Liang, Zhifu
  • Kolenko, Yury V.
  • Palmer, Richard E.
OrganizationsLocationPeople

article

High Performance Nanostructured MoS2 Electrodes with Spontaneous Ultra-Low Gold Loading for Hydrogen Evolution

  • Sadek Elgendy, Amr Abdelkader Ahmed
  • Higgins, Eliott
  • Haigh, Sj
  • Walton, Alex
  • Byrne, Conor
  • Lewis, Dj
  • Cai, Rongsheng
  • Papaderakis, Athanasios
Abstract

The scarcity and cost of noble metals used in commercial electrolyzers limit the sustainability and scalability of water electrolysis for green hydrogen production. Herein, we report the ultralow loading of Au nanoparticles onto MoS2 electrodes by the spontaneous process of galvanic deposition. AuNP@MoS2 electrode synthesis was optimized, and electrodes containing the smallest Au nanoparticle diameter (2.9 nm) and the lowest Au loading (0.044 μg cm–2) exhibited the best overall and intrinsic electrocatalytic performance. This enhancement is attributed to an increased Au–MoS2 interaction with smaller nanoparticles, making the MoS2 electrode more n-type. DC electrochemical characterization for the AuNP@MoS2 electrodes showed an exchange current density of 7.28 μA cm–2 and an overpotential at 10 mA cm–2 of −323 mV. These values are 4.5 times higher and 100 mV lower than those of the unmodified MoS2 electrode, respectively. Electrochemical AC experiments were used to evaluate the electrodes’ intrinsic catalytic activity, and it was shown that the AuNP@MoS2 electrodes exhibited an enhanced activity by as much as 3.5 times compared with MoS2. Additionally, the turnover frequency as estimated by the reciprocal of the RctCdl product, the latter calculated from the AC data, is estimated to be 58.8 s–1 and is among one of the highest reported for composite MoS2 materials.

Topics
  • nanoparticle
  • Deposition
  • density
  • impedance spectroscopy
  • experiment
  • gold
  • composite
  • Hydrogen
  • current density