Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mulder, Fokko

  • Google
  • 3
  • 9
  • 33

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Neutron Diffraction Study of a Sintered Iron Electrode In Operando2citations
  • 2016Water Sorption and Diffusion in (Reduced) Graphene Oxide-Alginate Biopolymer Nanocomposites21citations
  • 2016Composition dependent properties of graphene (oxide)-alginate biopolymer nanocomposites10citations

Places of action

Chart of shared publication
Weninger, Bernhard
1 / 1 shared
Thijs, M. A.
1 / 2 shared
Van Eijck, Lambert
1 / 8 shared
Nijman, Jeroen A. C.
1 / 1 shared
Vilcinskas, Karolis
2 / 2 shared
Jansen, Kaspar
2 / 48 shared
Zlopasa, Jure
1 / 3 shared
Picken, S. J.
2 / 16 shared
Koper, Ger
2 / 2 shared
Chart of publication period
2021
2016

Co-Authors (by relevance)

  • Weninger, Bernhard
  • Thijs, M. A.
  • Van Eijck, Lambert
  • Nijman, Jeroen A. C.
  • Vilcinskas, Karolis
  • Jansen, Kaspar
  • Zlopasa, Jure
  • Picken, S. J.
  • Koper, Ger
OrganizationsLocationPeople

article

Neutron Diffraction Study of a Sintered Iron Electrode In Operando

  • Weninger, Bernhard
  • Thijs, M. A.
  • Mulder, Fokko
  • Van Eijck, Lambert
  • Nijman, Jeroen A. C.
Abstract

Iron is a promising, earth-abundant material for future energy applications. In this study, we use a neutron diffractometer to investigate the properties of an iron electrode in an alkaline environment. As neutrons penetrate deeply into materials, neutron scattering gives us a unique insight into what is happening inside the electrode. We made our measurements while the electrode was charging or discharging. Our key questions are: Which phases occur for the first and second discharge plateaus? And why are iron electrodes less responsive at higher discharge rates? We conclude that metallic iron and iron hydroxide form the redox pair for the first discharge plateau. For the second discharge plateau, we found a phase similar to feroxyhyte but with symmetrical and equally spaced arrangement of hydrogen atoms. The data suggest that no other iron oxide or iron (oxy)hydroxide formed. Remarkable findings include the following: (1) substantial amounts of iron hydroxide are always present inside the electrode. (2) Passivation is mostly caused by iron hydroxide that is unable to recharge. (3) Iron fractions change as expected, while iron hydroxide fractions are delayed, resulting in substantial amounts of<br/>amorphous, undetectable iron phases. About 40% of the participating iron of the first plateau and about 55% of the participating iron for the second plateau are undetectable. (4) Massive and unexpected precipitation of iron hydroxide occurs in the transition from discharging to charging. (2), (3), and (4) together cause accumulation of iron hydroxide inside the electrode.

Topics
  • impedance spectroscopy
  • amorphous
  • phase
  • laser emission spectroscopy
  • Hydrogen
  • neutron diffraction
  • precipitation
  • iron
  • neutron scattering