People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Maschio, Lorenzo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024A computational study of the negative LiIn modified anode and its interaction with β-Li3PS4 solid-electrolyte for battery applicationscitations
- 2023Experimental and computational study of the role of defects and secondary phases on the thermoelectric properties of TiNi<sub />1+xSn<sub /> (0 ≤ x ≤ 0.12) half Heusler compoundscitations
- 2020Key Role of Defects in Thermoelectric Performance of TiMSn (M = Ni, Pd, and Pt) Half-Heusler Alloyscitations
- 2019Evolutionary Algorithm-Based Crystal Structure Prediction for Copper (I) Fluoridecitations
- 2018Thermoelectric Properties of p-Type Cu2O, CuO, and NiO from Hybrid Density Functional Theorycitations
- 2017Effect of Benzoic Acid as a Modulator in the Structure of UiO-66: An Experimental and Computational Studycitations
- 2017One step toward a new generation of C-MOS compatible oxide PN junctionscitations
- 2007Fast local-MP2 method with density-fitting for crystals. II. Test calculations and application to the carbon dioxide crystalcitations
Places of action
Organizations | Location | People |
---|
article
Key Role of Defects in Thermoelectric Performance of TiMSn (M = Ni, Pd, and Pt) Half-Heusler Alloys
Abstract
Half-Heusler alloys are thermoelectric materials that enable direct conversion of waste heat to electricity. A systematic study of these alloys has never been attempted using local Gaussian type orbitals (GTOs) and hybrid density functional theory methods within a periodic approach. In this work, we study the thermoelectric properties of TiMSn (M = Ni, Pd, and Pt) alloys with space group F4¯ 3m using the CRYSTAL code. We, first, set benchmarks for TiNiSn by comparing our data to existing literature values of Seebeck coefficient, power-factor, and thermoelectric figure-of-merit. Our results agree well. We, then, extend these calculations to TiPdSn and TiPtSn, for which consistent previous data are limited. Our computations show that all TiMSn (M = Ni, Pd, and Pt) alloys prefer p-type carriers and exhibit a figure-of-merit of ≈1 at a chosen carrier concentration and temperature. In addition, we aim to explain the low band-gap of TiNiSn by modeling defects in the pure system. Our defect model proves to have a smaller band-gap, and its power-factor is found to be almost twice of the pure TiNiSn. ; Peer reviewed