Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Podsiadło, Marcin

  • Google
  • 2
  • 4
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Vitrification and New Phases in the Water:Pyrimidine Binary Eutectic System1citations
  • 2006Molecular interactions in crystalline dibromomethane and diiodomethane, and the stabilities of their high-pressure and low-temperature phases22citations

Places of action

Chart of shared publication
Katrusiak, Andrzej
2 / 30 shared
Szafrański, Marek
2 / 23 shared
Patyk-Kaźmierczak, Ewa
1 / 4 shared
Dziubek, Kamil Filip
1 / 1 shared
Chart of publication period
2019
2006

Co-Authors (by relevance)

  • Katrusiak, Andrzej
  • Szafrański, Marek
  • Patyk-Kaźmierczak, Ewa
  • Dziubek, Kamil Filip
OrganizationsLocationPeople

article

Vitrification and New Phases in the Water:Pyrimidine Binary Eutectic System

  • Katrusiak, Andrzej
  • Szafrański, Marek
  • Podsiadło, Marcin
  • Patyk-Kaźmierczak, Ewa
Abstract

The binary diagram for pyrimidine:water mixtures has been determined by differential scanning calorimetry, in situ single-crystal, and powder X-ray diffraction experiments. The eutectic point has been located near the 1:4 n/n ratio at 234.5 K. The eutectic and nearly eutectic mixtures easily vitrify, and the vitrification could be kinetically induced for 1:3 n/n mixtures, too. Depending on the cooling rate, the 1:4 mixture freezes in the glass state, as a conglomerate of the glass and crystalline phases, or as the eutectic mixture of pyrimidine phase I and hexagonal ice Ih. When heated above 160 K, the glass phase transforms to a novel crystalline phase, tentatively identified as a pyrimidine hydrate, which in turn at ca. 200–210 K transforms into a eutectic mixture of pyrimidine phase I and hexagonal ice Ih. The pyrimidine–water binary diagram and novel crystalline and amorphous phases are relevant to the thermodynamic behavior of hydrophilic pyrimidine and its natural and synthetic derivatives in humid environments. The presently determined binary diagram can be straightforwardly applied for assessing the contents of water in highly hygroscopic pyrimidine samples

Topics
  • amorphous
  • experiment
  • crystalline phase
  • glass
  • glass
  • powder X-ray diffraction
  • differential scanning calorimetry