People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marques, Ef
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Interactions between Ionic Cellulose Derivatives Recycled from Textile Wastes and Surfactants: Interfacial, Aggregation and Wettability Studiescitations
- 2022Polymer/surfactant mixtures as dispersants and non-covalent functionalization agents of multiwalled carbon nanotubes: Synergism, morphological characterization and molecular picturecitations
- 2021Enhancing the dispersibility of multiwalled carbon nanotubes within starch-based films by the use of ionic surfactantscitations
- 2021Nanocomposites Prepared from Carbon Nanotubes and the Transition Metal Dichalcogenides WS2 and MoS2 via Surfactant-Assisted Dispersions as Electrocatalysts for Oxygen Reactionscitations
- 2021Carbon nanotube/graphene nanocomposites built via surfactant-mediated colloid assembly as metal-free catalysts for the oxygen reduction reactioncitations
- 2018Block Copolymers as Dispersants for Single-Walled Carbon Nanotubes: Modes of Surface Attachment and Role of Block Polydispersitycitations
- 2017Critical Role of the Spacer Length of Gemini Surfactants on the Formation of Ionic Liquid Crystals and Thermotropic Behaviorcitations
- 2013Self-Aggregation Properties of Ionic Liquid 1,3-Didecyl-2-methylimidazolium Chloride in Aqueous Solution: From Spheres to Cylinders to Bilayerscitations
- 2008Spontaneous vesicle formation in catanionic mixtures of amino acid-based surfactants: Chain length symmetry effectscitations
- 2007Interactions between gemini surfactants and polymers: Thermodynamic studiescitations
- 2004Network formation of catanionic vesicles and oppositely charged polyelectrolytes. Effect of polymer charge density and hydrophobic modificationcitations
Places of action
Organizations | Location | People |
---|
article
Critical Role of the Spacer Length of Gemini Surfactants on the Formation of Ionic Liquid Crystals and Thermotropic Behavior
Abstract
Numerous reports have shown that the self assembling properties of 12-s-12 bis(quaternary ammonium) gemini surfactants in aqueous solution are significantly influenced by s, the number of methylene groups in the covalent spacer. However, the role played by s on the phase behavior of the single compounds has not been investigated in a similarly systematic way. Here, we report on the thermotropic phase behavior of the anhydrous compounds with s = 2-6, 8, 10, and 12, resorting to differential scanning calorimetry (DSC), polarized light microscopy (PLM), and Xray diffraction (XRD). All of the compounds show a stepwise melting behavior, decomposing at 200 degrees C. As the spacer length increases, nonmonotonic trends are observed for the thermodynamic parameters of the thermotropic phase transitions, mesophase formation, and solid-state door spacings. In particular, the number and type of mesophases (ordered smectic phases and/or fluid smectic liquid crystals) depend critically on s. Further, upon heating molecules with s < 8 decompose before the liquid phase, while those with long spacers, s = 8-12, reach the isotropization (clearing) temperature, hence forming both ionic liquid crystals and ionic liquid phases. We demonstrate that the melting behavior and type of ionic mesophases formed by gemini molecules can be usefully manipulated by a simple structural parameter like the length of the covalent linker.