Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yarbrough, Josiah

  • Google
  • 2
  • 1
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Area-Selective Deposition by Cyclic Adsorption and Removal of 1-Nitropropane.9citations
  • 2022New precursors for selective atomic layer deposition of metal oxides with small molecule inhibitorscitations

Places of action

Chart of shared publication
Bent, Stacey F.
1 / 30 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Bent, Stacey F.
OrganizationsLocationPeople

article

Area-Selective Deposition by Cyclic Adsorption and Removal of 1-Nitropropane.

  • Yarbrough, Josiah
  • Bent, Stacey F.
Abstract

The ever-greater complexity of modern electronic devices requires a larger chemical toolbox to support their fabrication. Here, we explore the use of 1-nitropropane as a small molecule inhibitor (SMI) for selective atomic layer deposition (ALD) on a combination of SiO2, Cu, CuOx, and Ru substrates. Results using water contact angle goniometry, Auger electron spectroscopy, and infrared spectroscopy show that 1-nitropropane selectively chemisorbs to form a high-quality inhibition layer on Cu and CuOx at an optimized temperature of 100 °C, but not on SiO2 and Ru. When tested against Al2O3 ALD, however, a single pulse of 1-nitropropane is insufficient to block deposition on the Cu surface. Thus, a new multistep process is developed for low-temperature Al2O3 ALD that cycles through exposures of 1-nitropropane, an aluminum metalorganic precursor, and coreactants H2O and O3, allowing the SMI to be sequentially reapplied and etched. Four different Al ALD precursors were investigated: trimethylaluminum (TMA), triethylaluminum (TEA), tris(dimethylamido)aluminum (TDMAA), and dimethylaluminum isopropoxide (DMAI). The resulting area-selective ALD process enables up to 50 cycles of Al2O3 ALD on Ru but not Cu, with 98.7% selectivity using TEA, and up to 70 cycles at 97.4% selectivity using DMAI. This work introduces a new class of SMI for selective ALD at lower temperatures, which could expand selective growth schemes to biological or organic substrates where temperature instability may be a concern.

Topics
  • impedance spectroscopy
  • surface
  • aluminium
  • Auger electron spectroscopy
  • infrared spectroscopy
  • atomic layer deposition