Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cuppen, Herma M.

  • Google
  • 1
  • 4
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022IRFEL Selective Irradiation of Amorphous Solid Water6citations

Places of action

Chart of shared publication
Ioppolo, Sergio
1 / 7 shared
Noble, Jennifer A.
1 / 1 shared
Coussan, Stephane
1 / 4 shared
Redlich, Britta
1 / 3 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Ioppolo, Sergio
  • Noble, Jennifer A.
  • Coussan, Stephane
  • Redlich, Britta
OrganizationsLocationPeople

article

IRFEL Selective Irradiation of Amorphous Solid Water

  • Ioppolo, Sergio
  • Cuppen, Herma M.
  • Noble, Jennifer A.
  • Coussan, Stephane
  • Redlich, Britta
Abstract

<p>Amorphous solid water (ASW) is one of the most widely studied solid phase systems. A better understanding of the nature of inter- and intramolecular forces in ASW is, however, still required to correctly interpret the catalytic role of ASW in the formation and preservation of molecular species in environments such as the icy surfaces of Solar System objects, on interstellar icy dust grains, and potentially even in the upper layers of the Earth's atmosphere. In this work, we have systematically exposed porous ASW (pASW) to mid-infrared radiation generated by a free-electron laser at the HFML-FELIX facility in The Netherlands to study the effect of vibrational energy injection into the surface and bulk modes of pASW. During multiple sequential irradiations on the same ice spot, we observed selective effects both at the surface and in the bulk of the ice. Although the density of states in pASW should allow for a fast vibrational relaxation through the H-bonded network, part of the injected energy is converted into structural ice changes as illustrated by the observation of spectral modifications when performing Fourier transform infrared spectroscopy in reflection-absorption mode. Future studies will include the quantification of such effects by systematically investigating ice thickness, ice morphology, and ice composition.</p>

Topics
  • porous
  • density
  • impedance spectroscopy
  • surface
  • amorphous
  • grain
  • phase
  • Fourier transform infrared spectroscopy