Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Da Silva, Mavr

  • Google
  • 3
  • 8
  • 32

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021On the Aromatic Stabilization of Fused Polycyclic Aromatic Hydrocarbons20citations
  • 2014Experimental thermochemical study of 2-chloroacetophenone and 2,4'-dichloroacetophenone7citations
  • 2004Thermochemical studies of three bis(O-alkyl-N-benzoylthiocarbamato)nickel(II) complexes5citations

Places of action

Chart of shared publication
Costa, Jcs
1 / 12 shared
Lima, Lmss
1 / 1 shared
Campos, Rm
1 / 2 shared
Santos, Lmnbf
2 / 23 shared
Amaral, Lmpf
1 / 5 shared
Beyer, L.
1 / 5 shared
Schroder, B.
1 / 4 shared
Dietze, F.
1 / 1 shared
Chart of publication period
2021
2014
2004

Co-Authors (by relevance)

  • Costa, Jcs
  • Lima, Lmss
  • Campos, Rm
  • Santos, Lmnbf
  • Amaral, Lmpf
  • Beyer, L.
  • Schroder, B.
  • Dietze, F.
OrganizationsLocationPeople

article

On the Aromatic Stabilization of Fused Polycyclic Aromatic Hydrocarbons

  • Costa, Jcs
  • Da Silva, Mavr
  • Lima, Lmss
  • Campos, Rm
  • Santos, Lmnbf
Abstract

The thermodynamic properties and band gap energies were evaluated for six ortho- and peri-fused polycyclic aromatic hydrocarbons (PAHs): triphenylene; benzo[a]pyrene; benzo[e]pyrene; perylene; benzo[ghi]perylene; coronene. The standard molar enthalpies of formation in the crystalline state and the standard molar enthalpies of sublimation were measured by high precision combustion calorimetry and Knudsen effusion methodology, respectively. The combination of the molar enthalpies of formation in the crystalline state with the respective enthalpies of sublimation was used to evaluate the energetics of the progressive peri-fusion of the aromatic moieties from triphenylene to coronene aiming to investigate the hypothetical superaromaticity character of coronene. The linear trend of the enthalpy of formation in crystalline and gaseous phases in the series (from benzo[e]pyrene to coronene) is an irrefutable indication of a non-superaromaticity character of coronene. High accurate thermodynamic properties of sublimation (volatility, enthalpy, and entropy of sublimation) were derived by the measurement of vapor pressures as a function of temperature, using a Knudsen/quartz crystal effusion methodology. Furthermore, the p-electronic conjugation of these compounds was explored by evaluation of the optical band gaps along with this series of compounds. The morphology of perylene, benzo[ghi]perylene, and coronene thin films, deposited by physical vapor deposition onto transparent conductive oxide substrates (ITO and FTO), was used to analyze the nucleation and growth mechanisms. The morphologies observed were found to be related to the cohesive energy and entropy of the bulk.

Topics
  • impedance spectroscopy
  • compound
  • phase
  • thin film
  • physical vapor deposition
  • combustion
  • calorimetry