People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Szymanski, Wiktor
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Efficient, Near‐Infrared Light‐Induced Photoclick Reaction Enabled by Upconversion Nanoparticlescitations
- 2023Efficient, Near‐Infrared Light‐Induced Photoclick Reaction Enabled by Upconversion Nanoparticlescitations
- 2021Molecular photoswitches in aqueous environmentscitations
- 2020General Principles for the Design of Visible‐Light‐Responsive Photoswitches: Tetra‐ ortho ‐Chloro‐Azobenzenescitations
- 2020General Principles for the Design of Visible-Light-Responsive Photoswitches: Tetra-ortho-Chloro-Azobenzenescitations
- 2020General Principles for the Design of Visible-Light-Responsive Photoswitches:Tetra-ortho-Chloro-Azobenzenescitations
- 2018Solvent Effects on the Actinic Step of Donor-Acceptor Stenhouse Adduct Photoswitchingcitations
- 2018Solvent Effects on the Actinic Step of Donor-Acceptor Stenhouse Adduct Photoswitchingcitations
- 2018Photoswitching of DNA Hybridization Using a Molecular Motorcitations
- 2018Photoswitching of DNA Hybridization Using a Molecular Motorcitations
- 2018Molecular Motors in Aqueous Environmentcitations
Places of action
Organizations | Location | People |
---|
article
Molecular Motors in Aqueous Environment
Abstract
Molecular motors are Nature's solution for (supra)molecular transport and muscle functioning and are involved in most forms of directional motion at the cellular level. Their synthetic counterparts have also found a myriad of applications, ranging from molecular machines and smart materials to catalysis and anion transport. Although light-driven rotary molecular motors are likely to be suitable for use in an artificial cell, as well as in bionanotechnology, thus far they are not readily applied under physiological conditions. This results mainly from their inherently aromatic core structure, which makes them insoluble in aqueous solution. Here, the study of the dynamic behavior of these motors in biologically relevant media is described. Two molecular motors were equipped with solubilizing substituents and studied in aqueous solutions. Additionally, the behavior of a previously reported molecular motor was studied in micelles, as a model system for the biologically environment. Design principles were established for molecular motors in these media, and insights are given into pH-dependent behavior. The work presented herein may provide a basis for the application of the remarkable properties of molecular motors in more advanced biohybrid systems.