Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Toroker, Maytal Caspary

  • Google
  • 3
  • 25
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Enhancing Photocatalysis: Understanding the Mechanistic Diversity in Photocatalysts Modified with Single‐Atom Catalytic Sites7citations
  • 2022NiFe-mixed metal porphyrin aerogels as oxygen evolution reaction catalysts in alkaline electrolysers2citations
  • 2022Transferable Classical Force Field for Pure and Mixed Metal Halide Perovskites Parameterized from First-Principles11citations

Places of action

Chart of shared publication
Krivtsov, Igor
1 / 3 shared
Dhaka, Kapil
1 / 2 shared
Adler, Christiane
1 / 2 shared
Bloh, Jonathan Z.
1 / 2 shared
Neubert, Susann
1 / 2 shared
Beranek, Radim
1 / 2 shared
Mitoraj, Dariusz
1 / 4 shared
Biskupek, Johannes
1 / 18 shared
Kaiser, Ute
1 / 50 shared
Patzsch, Julia
1 / 2 shared
Jánošíková, Petra
1 / 2 shared
Kruczała, Krzysztof
1 / 3 shared
Honig, Hilah C.
1 / 2 shared
Moschkowitsch, Wenjamin
1 / 1 shared
Samanta, Bipasa
2 / 2 shared
Zion, Noam
1 / 2 shared
Valadez-Villalobos, Karen
1 / 2 shared
Gallardo, Juan Jesús
1 / 2 shared
Tao, Shuxia
1 / 35 shared
Castro, Rafael María Madero
1 / 1 shared
Anta, Juan A.
1 / 13 shared
Vicent-Luna, José Manuel
1 / 12 shared
Navas, Javier
1 / 4 shared
Balestra, Salvador R. G.
1 / 3 shared
Seijas-Bellido, Juan Antonio
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Krivtsov, Igor
  • Dhaka, Kapil
  • Adler, Christiane
  • Bloh, Jonathan Z.
  • Neubert, Susann
  • Beranek, Radim
  • Mitoraj, Dariusz
  • Biskupek, Johannes
  • Kaiser, Ute
  • Patzsch, Julia
  • Jánošíková, Petra
  • Kruczała, Krzysztof
  • Honig, Hilah C.
  • Moschkowitsch, Wenjamin
  • Samanta, Bipasa
  • Zion, Noam
  • Valadez-Villalobos, Karen
  • Gallardo, Juan Jesús
  • Tao, Shuxia
  • Castro, Rafael María Madero
  • Anta, Juan A.
  • Vicent-Luna, José Manuel
  • Navas, Javier
  • Balestra, Salvador R. G.
  • Seijas-Bellido, Juan Antonio
OrganizationsLocationPeople

article

Transferable Classical Force Field for Pure and Mixed Metal Halide Perovskites Parameterized from First-Principles

  • Valadez-Villalobos, Karen
  • Gallardo, Juan Jesús
  • Toroker, Maytal Caspary
  • Samanta, Bipasa
  • Tao, Shuxia
  • Castro, Rafael María Madero
  • Anta, Juan A.
  • Vicent-Luna, José Manuel
  • Navas, Javier
  • Balestra, Salvador R. G.
  • Seijas-Bellido, Juan Antonio
Abstract

<p>Many key features in photovoltaic perovskites occur in relatively long time scales and involve mixed compositions. This requires realistic but also numerically simple models. In this work we present a transferable classical force field to describe the mixed hybrid perovskite MAxFA1-xPb(BryI1-y)3 for variable composition (∀x, y ∈ [0, 1]). The model includes Lennard-Jones and Buckingham potentials to describe the interactions between the atoms of the inorganic lattice and the organic molecule, and the AMBER model to describe intramolecular atomic interactions. Most of the parameters of the force field have been obtained by means of a genetic algorithm previously developed to parametrize the CsPb(BrxI1-x)3 perovskite (Balestra et al. J. Mater. Chem. A. 2020, DOI: 10.1039/d0ta03200j). The algorithm finds the best parameter set that simultaneously fits the DFT energies obtained for several crystalline structures with moderate degrees of distortion with respect to the equilibrium configuration. The resulting model reproduces correctly the XRD patterns, the expansion of the lattice upon I/Br substitution, and the thermal expansion coefficients. We use the model to run classical molecular dynamics simulations with up to 8600 atoms and simulation times of up to 40 ns. From the simulations we have extracted the ion diffusion coefficient of the pure and mixed perovskites, presenting for the first time these values obtained by a fully dynamical method using a transferable model fitted to first-principles calculations. The values here reported can be considered as the theoretical upper limit, that is, without grain boundaries or other defects, for ion migration dynamics induced by halide vacancies in photovoltaic perovskite devices under operational conditions. </p>

Topics
  • perovskite
  • impedance spectroscopy
  • grain
  • x-ray diffraction
  • simulation
  • molecular dynamics
  • thermal expansion
  • defect
  • density functional theory