Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Madani, S. Hadi

  • Google
  • 1
  • 3
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Isosteric Heats of Adsorption of Gases and Vapors on a Microporous Carbonaceous Material14citations

Places of action

Chart of shared publication
Rodríguez-Reinoso, Francisco
1 / 2 shared
Biggs, Mark J.
1 / 5 shared
Pendleton, Phillip
1 / 2 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Rodríguez-Reinoso, Francisco
  • Biggs, Mark J.
  • Pendleton, Phillip
OrganizationsLocationPeople

article

Isosteric Heats of Adsorption of Gases and Vapors on a Microporous Carbonaceous Material

  • Rodríguez-Reinoso, Francisco
  • Biggs, Mark J.
  • Pendleton, Phillip
  • Madani, S. Hadi
Abstract

<p>High-resolution, multiple temperature adsorption isotherms of ten adsorptives classified into highly polar (1.7 ± 0.1 D) and nonpolar (0 D) probes with increasing kinetic diameters were measured on a well-characterized poly(furfuryl alcohol)-based microporous carbon. The Clausius-Clapeyron equation was applied to each, resulting in isosteric heats of adsorption. Fluid-fluid interactions, nonspecific fluid-solid interactions, and specific fluid-high energy site interactions were identified and discussed as variables contributing to the total isosteric heat of adsorption. Each isosteric heat was compared against its position relative to adsorption heat by a flat surface, twice this heat, and adsorptive latent heat of condensation. The shape of each curve was analyzed via the contribution of each interaction to the total across the fractional filing range, leading to identification of fillings as Zero Coverage, Low Coverage, and High Coverage. This systematic investigation provided a detailed analysis of the influences of adsorptive size, its conformation, and polarity effects on micropore filling, and tabulation of the analyses gave a clear and comprehensive insight into the adsorption mechanisms.</p>

Topics
  • surface
  • Carbon
  • alcohol