Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Silva, Ams

  • Google
  • 2
  • 12
  • 43

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Solid-Liquid-Gas Phase Equilibria for Small Phenylene-Thiophene Co-Oligomers4citations
  • 2011Characterization of galactooligosaccharides produced by beta-galactosidase immobilized onto magnetized Dacron39citations

Places of action

Chart of shared publication
Costa, Jcs
1 / 12 shared
Santos, Lmnbf
1 / 23 shared
Lima, Cfrac
1 / 2 shared
Mendes, A.
1 / 22 shared
Carvalho, Lb
1 / 1 shared
Rodrigues, Lrm
1 / 1 shared
Torres, Dpm
1 / 1 shared
Domingues, Mdm
1 / 1 shared
Cardoso, Sm
1 / 1 shared
Balcao, Vm
1 / 1 shared
Neri, Dfm
1 / 1 shared
Teixeira, Jac
1 / 1 shared
Chart of publication period
2022
2011

Co-Authors (by relevance)

  • Costa, Jcs
  • Santos, Lmnbf
  • Lima, Cfrac
  • Mendes, A.
  • Carvalho, Lb
  • Rodrigues, Lrm
  • Torres, Dpm
  • Domingues, Mdm
  • Cardoso, Sm
  • Balcao, Vm
  • Neri, Dfm
  • Teixeira, Jac
OrganizationsLocationPeople

article

Solid-Liquid-Gas Phase Equilibria for Small Phenylene-Thiophene Co-Oligomers

  • Costa, Jcs
  • Silva, Ams
  • Santos, Lmnbf
  • Lima, Cfrac
  • Mendes, A.
Abstract

This work reports a comprehensive experimental evaluation of the solid-liquid-gas phase equilibria for five representative phenylene-thiophene co-oligomers (3-ring aromatic compounds having both phenyl and thienyl units). The melting temperatures and corresponding standard molar enthalpies and entropies of fusion were measured by differential scanning calorimetry. The equilibrium vapor pressures of the crystalline solids as a function of temperature were measured by a combined Knudsen/quartz-crystal effusion method, with the consequent derivation of the standard molar enthalpies, entropies, and Gibbs energies of sublimation. The thermodynamic properties of vaporization were estimated from the fusion and sublimation data. The results were analyzed together with the literature data for the corresponding phenylene and thiophene homo-oligomers. The thermodynamic properties of fusion and sublimation exhibited a dependence on ring identity and position that cannot be adequately described by a simple group additivity reasoning. The plot of the Gibbs energy of sublimation as a function of the number of thienyl rings in the co-oligomer showed the existence of two series. Terminal 3-thienyl rings and a linear molecular shape were found to be consistent factors contributing to the stabilization of the crystal phase. The higher melting temperatures and lower volatilities of crystalline 3-thienyl compounds were tentatively explained by the ability of these rings to maximize intermolecular C-H & BULL;& BULL;& BULL;pi interactions independently of the sulfur position. The optical energy gaps, as measured by UV-vis in solution, were found to lie within the values for typical organic semiconductors (< 4 eV) and to decrease for co-oligomers containing more 2-thienyl units, following the increased ring-ring planarity of the molecules. The surface morphology of vapor-deposited thin films suggests a stronger tendency of the co-oligomers, if compared to their corresponding homo-oligomers p-terphenyl and terthiophene, to form less amorphous films.

Topics
  • surface
  • compound
  • amorphous
  • thin film
  • semiconductor
  • laser emission spectroscopy
  • differential scanning calorimetry
  • gas phase
  • melting temperature