People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Manna, Liberato
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (61/61 displayed)
- 2024Investigation of the Octahedral Network Structure in Formamidinium Lead Bromide Nanocrystals by Low-Dose Scanning Transmission Electron Microscopycitations
- 2024Investigation of the octahedral network structure in formamidinium lead bromide nanocrystals by low-dose scanning transmission electron microscopycitations
- 2024Exogenous Metal Cations in the Synthesis of CsPbBr3 Nanocrystals and Their Interplay with Tertiary Aminescitations
- 2024Exogenous Metal Cations in the Synthesis of CsPbBr3 Nanocrystals and Their Interplay with Tertiary Aminescitations
- 2024Stainless Steel Activation for Efficient Alkaline Oxygen Evolution in Advanced Electrolyzerscitations
- 2024Lead‐free halide perovskite materials and optoelectronic devices: progress and prospectivecitations
- 2024Exciton-photocarrier interference in mixed lead-halide-perovskite nanocrystals
- 2023Collective Diffraction Effects in Perovskite Nanocrystal Superlatticescitations
- 2023Lead-Free Halide Perovskite Materials and Optoelectronic Devices: Progress and Prospectivecitations
- 2023State of the Art and Prospects for Halide Perovskite Nanocrystals.
- 2023Light Emission from Low‐Dimensional Pb‐Free Perovskite‐Related Metal Halide Nanocrystalscitations
- 2023Lead‐Free Halide Perovskite Materials and Optoelectronic Devices: Progress and Prospectivecitations
- 2022Recent Progress in Mixed A‐Site Cation Halide Perovskite Thin‐Films and Nanocrystals for Solar Cells and Light‐Emitting Diodescitations
- 2022Recent Progress in Mixed A‐Site Cation Halide Perovskite Thin‐Films and Nanocrystals for Solar Cells and Light‐Emitting Diodes
- 2022Halide perovskites as disposable epitaxial templates for the phase-selective synthesis of lead sulfochloride nanocrystalscitations
- 2022Recent progress in mixed a‐site cation halide perovskite thin‐films and nanocrystals for solar cells and light‐emitting diodescitations
- 2022One Hundred-Nanometer-Sized CsPbBr3/m-SiO2 Composites Prepared via Molten-Salts Synthesis are Optimal Green Phosphors for LCD Display Devicescitations
- 2022Exploiting the Transformative Features of Metal Halides for the Synthesis of CsPbBr3@SiO2 Core-Shell Nanocrystalscitations
- 2022Highly Emitting Perovskite Nanocrystals with 2-Year Stability in Water through an Automated Polymer Encapsulation for Bioimagingcitations
- 2022Cu+→ Mn2+ Energy Transfer in Cu, Mn Coalloyed Cs3ZnCl5Colloidal Nanocrystalscitations
- 2021Detection of Pb2+traces in dispersion of Cs4PbBr6 nanocrystals by in situ liquid cell transmission electron microscopycitations
- 2021Structure and Surface Passivation of Ultrathin Cesium Lead Halide Nanoplatelets Revealed by Multilayer Diffractioncitations
- 2021Metamorphoses of Cesium Lead Halide Nanocrystalscitations
- 2021Sb-Doped Metal Halide Nanocrystals: A 0D versus 3D Comparisoncitations
- 2021Halide Perovskite-Lead Chalcohalide Nanocrystal Heterostructurescitations
- 2021Halide Perovskite-Lead Chalcohalide Nanocrystal Heterostructurescitations
- 2021Exploiting the Transformative Features of Metal Halides for the Synthesis of CsPbBr3@SiO2 Core–Shell Nanocrystalscitations
- 2021State of the art and prospects for halide perovskite nanocrystalscitations
- 2020Superlattices are greener on the other sidecitations
- 2020Alloy CsCd x Pb 1- x Br 3 Perovskite Nanocrystals:The Role of Surface Passivation in Preserving Composition and Blue Emissioncitations
- 2020CsPbX3/SiOx (X = Cl, Br, I) monoliths prepared via a novel sol-gel route starting from Cs4PbX6 nanocrystalscitations
- 2020Microwave-Induced Structural Engineering and Pt Trapping in 6R-TaS2 for the Hydrogen Evolution Reactioncitations
- 2020Transforming colloidal Cs4PbBr6 nanocrystals with poly(maleic anhydride-alt-1-octadecene) into stable CsPbBr3 perovskite emitters through intermediate heterostructurescitations
- 2020Nanocrystals of Lead Chalcohalides:A Series of Kinetically Trapped Metastable Nanostructurescitations
- 2020Alloy CsCd x Pb1-x Br3 Perovskite Nanocrystals: The Role of Surface Passivation in Preserving Composition and Blue Emissioncitations
- 2020Alloy CsCd xPb1- xBr3Perovskite Nanocrystalscitations
- 2020Nano- and microscale apertures in metal films fabricated by colloidal lithography with perovskite nanocrystalscitations
- 2020Developing Lattice Matched ZnMgSe Shells on InZnP Quantum Dots for Phosphor Applicationscitations
- 2020Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillatorscitations
- 2020Nanocrystals of Lead Chalcohalidescitations
- 2020Cs 3 Cu 4 In 2 Cl 13 Nanocrystals:A Perovskite-Related Structure with Inorganic Clusters at A Sitescitations
- 2020Cs3Cu4In2Cl13 Nanocrystalscitations
- 2019Ruthenium-Decorated Cobalt Selenide Nanocrystals for Hydrogen Evolutioncitations
- 2019Fully Inorganic Ruddlesden-Popper Double Cl-I and Triple Cl-Br-I Lead Halide Perovskite Nanocrystalscitations
- 2019Coating evaporated MAPI thin films with organic molecules: improved stability at high temperature and implementation in high-efficiency solar cellscitations
- 2019Stable Ligand Coordination at the Surface of Colloidal CsPbBr 3 Nanocrystalscitations
- 2019Stable Ligand Coordination at the Surface of Colloidal CsPbBr3 Nanocrystalscitations
- 2019In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystalscitations
- 2018Colloidal Synthesis of Double Perovskite Cs2AgInCl6 and Mn-Doped Cs2AgInCl6 Nanocrystalscitations
- 2018Colloidal Synthesis of Double Perovskite Cs2AgInCl6 and Mn-Doped Cs2AgInCl6 Nanocrystalscitations
- 2018In Situ Dynamic Nanostructuring of the Cu–Ti Catalyst-Support System Promotes Hydrogen Evolution under Alkaline Conditionscitations
- 2018Benzoyl Halides as Alternative Precursors for the Colloidal Synthesis of Lead-Based Halide Perovskite Nanocrystalscitations
- 2018Ab initio structure determination of Cu2- xTe plasmonic nanocrystals by precession-assisted electron diffraction tomography and HAADF-STEM imagingcitations
- 2018The Phosphine Oxide Route toward Lead Halide Perovskite Nanocrystalscitations
- 2018Ab Initio Structure Determination of Cu2- xTe Plasmonic Nanocrystals by Precession-Assisted Electron Diffraction Tomography and HAADF-STEM Imagingcitations
- 2016Tuning the Lattice Parameter of InxZnyP for Highly Luminescent Lattice-Matched Core/Shell Quantum Dots
- 2015Prospects of Nanoscience with Nanocrystalscitations
- 2014Self-assembly of octapod-shaped colloidal nanocrystals into a hexagonal ballerina network embedded in a thin polymer film
- 2013Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystalscitations
- 2012Colloidal Cu 2-x(S ySe 1-y) alloy nanocrystals with controllable crystal phase: Synthesis, plasmonic properties, cation exchange and electrochemical lithiation
- 2009Quantum dot nanoparticles: Properties, surface functionalization, and their applications in biosensoring and imaging
Places of action
Organizations | Location | People |
---|
article
Cs3Cu4In2Cl13 Nanocrystals
Abstract
<p>An effort to synthesize the Cu(I) variant of a lead-free double perovskite isostructural with Cs<sub>2</sub>AgInCl<sub>6</sub> resulted in the formation of Cs<sub>3</sub>Cu<sub>4</sub>In<sub>2</sub>Cl<sub>13</sub> nanocrystals with an unusual structure, as revealed by single-nanocrystal three-dimensional electron diffraction. These nanocrystals adopt a A<sub>2</sub>BX<sub>6</sub> structure (K<sub>2</sub>PtCl<sub>6</sub> type, termed vacancy ordered perovskite) with tetrahedrally coordinated Cu(I) ions. In the structure, 25% of the A sites are occupied by [Cu<sub>4</sub>Cl]<sup>3+</sup> clusters (75% by Cs<sup>+</sup>), and the B sites are occupied by In<sup>3+</sup>. Such a Cs<sub>3</sub>Cu<sub>4</sub>In<sub>2</sub>Cl<sub>13</sub> compound prepared at the nanoscale is not known in the bulk and is an example of a multinary metal halide with inorganic cluster cations residing in A sites. The stability of the compound was supported by density functional theory calculations that also revealed that its bandgap is direct but parity forbidden. The existence of the Cs<sub>3</sub>Cu<sub>4</sub>In<sub>2</sub>Cl<sub>13</sub> structure demonstrates that small inorganic cluster cations can occupy A sites in multinary metal halides.</p>