People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rozmysłowska-Wojciechowska, Anita
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022Modelling and Characterisation of Residual Stress of SiC-Ti3C2Tx MXene Composites Sintered via Spark Plasma Sintering Methodcitations
- 2021Microstructure and Mechanical Properties of Alumina Composites with Addition of Structurally Modified 2D Ti3C2 (MXene) Phasecitations
- 2021Antimicrobial performance of Ti3C3 MXene-based point-of-use water filters
- 2021Synthesis, characterization and biophysical evaluation of the 2D Ti2CTx MXene using 3D spheroid-type culturescitations
- 2021Influence of Ti3C2Tx MXene and Surface-Modified Ti3C2Tx MXene Addition on Microstructure and Mechanical Properties of Silicon Carbide Composites Sintered via Spark Plasma Sintering Methodcitations
- 2021Silicon carbide nanocomposites reinforced with disordered graphitic carbon formed in situ through oxidation of Ti3C2 MXene during sinteringcitations
- 2021MXene-based materials for the application in point-of-use water filters
- 2021Filtration Materials Modified with 2D Nanocomposites—A New Perspective for Point-of-Use Water Treatmentcitations
- 2020Controlling the Porosity and Biocidal Properties of the Chitosan-Hyaluronate Matrix Hydrogel Nanocomposites by the Addition of 2D Ti3C2Tx MXenecitations
- 2019Ti2C MXene Modified with Ceramic Oxide and Noble Metal Nanoparticles: Synthesis, Morphostructural Properties, and High Photocatalytic Activitycitations
- 20192D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapycitations
- 2019Influence of modification of Ti3C2MXene with ceramic oxide and noble metal nanoparticles on its antimicrobial properties and ecotoxicity towards selected algae and higher plantscitations
- 2019The toxicity in vitro of titanium dioxide nanoparticles modified with noble metals on mammalian cellscitations
Places of action
Organizations | Location | People |
---|
article
Ti2C MXene Modified with Ceramic Oxide and Noble Metal Nanoparticles: Synthesis, Morphostructural Properties, and High Photocatalytic Activity
Abstract
Among 2D materials, such as graphene, new family of two-dimensional anisotropic carbides and nitrides of early transition metals (MXenes) is very interesting because of the potential applications in electronics, medicine and photocatalysis. In the paper, preparation, morpho-structural characterization, band gaps determination and salicylic acid (SA) photodegradation ability of Ti2C MXene and six nanocomposites consisting of the MXene modified by TiO2, Ag2O, Ag, PdO, Pd and Au were reported. It was confirmed using electron diffraction studies (EDS), energy dispersive X-ray spectroscopy (EDX) and high resolution transmission microscopy (HRTEM) that metals and metal oxides occur on the MXene flakes as nanoparticles in a shape of spots. The band gaps determined experimentally using Tauc’s method are placed in the region of 0.90-1.31 eV. In recent years, the method of photocatalytic decomposition of pollutants using semiconductor photocatalysts and UV-VIS energy has become increasingly important. The MXene based nanocomposites revealed high activity in the SA photodegradation reaction (86.1-97.1% of degraded SA after 3h, concentration of SA initial solution 100μM, the circulation rate of the SA solution 0.875 cm3/min). The interfacial charge transfer mechanism and a role of the metallic and metal oxide nanoparticles in the photocatalytic activity of the MXene based nanocomposites were presented and discussed