People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nielsen, Ulla Gro
University of Southern Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023The effects of low oxidation-reduction potential on the performance of full-scale hybrid membrane-aerated biofilm reactorscitations
- 2021Synthesis and Thermal Degradation of MAl4(OH)12SO4·3H2O with M = Co2+, Ni2+, Cu2+, and Zn2+citations
- 2021Synthesis and Thermal Degradation of MAl 4 (OH) 12 SO 4 ·3H 2 O with M = Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+citations
- 2020The Effect of oxygen defects on the structural evolution of LiVPO4F1−yoy cathode materialscitations
- 2020Remarkable reversal of 13 C-NMR assignment in d 1 , d 2 compared to d 8 , d 9 acetylacetonate complexes:Analysis and explanation based on solid-state MAS NMR and computationscitations
- 2020Remarkable reversal of 13C-NMR assignment in d1, d2 compared to d8, d9 acetylacetonate complexescitations
- 2019Reactivity of magnesium borohydride – Metal hydride composites, γ-Mg(BH4)2-MHx, M = Li, Na, Mg, Cacitations
- 2019Reactivity of magnesium borohydride – Metal hydride composites, $mathrm{γ-Mg(BH_{4})_{2}-MH_{x}, M = Li, Na, Mg, Ca}$citations
- 2019Montmorillonite-surfactant hybrid particles for modulating intestinal P-glycoprotein-mediated transportcitations
- 2019Reactivity of magnesium borohydride – Metal hydride composites, γ-Mg(BH 4 ) 2 -MH x , M = Li, Na, Mg, Cacitations
- 2019Synthesis and Structural Characterization of a Pure ZnAl 4 (OH) 12 (SO 4 )·2.6H 2 O Layered Double Hydroxidecitations
- 2019Synthesis and Structural Characterization of a Pure ZnAl 4 (OH) 12 (SO 4 )·2.6H 2 O Layered Double Hydroxidecitations
- 2018Order in disorder:solution and solid-state studies of [MM] wheels (M = Cr, Al; M = Ni, Zn)citations
- 2018Order in disordercitations
- 2018In situ processing of fluorinated carbon—Lithium fluoride nanocompositescitations
- 2016The role of aluminium as an additive element in the synthesis of porous 4H-silicon carbidecitations
- 2016The role of aluminium as an additive element in the synthesis of porous 4H-silicon carbidecitations
- 2015How the Method of Synthesis Governs the Local and Global Structure of Zinc Aluminum Layered Double Hydroxidescitations
- 2015How the Method of Synthesis Governs the Local and Global Structure of Zinc Aluminum Layered Double Hydroxidescitations
- 2015The effect of preparation method on the proton conductivity of indium doped tin pyrophosphatescitations
- 2014The stoichiometry of synthetic alunite as a function of hydrothermal ageing investigated by solid-state NMR spectroscopy, powder X-ray diffraction, and infrared spectroscopycitations
- 2012Preparation of Nafion 117™-SnO 2 Composite Membranes using an Ion-Exchange Methodcitations
- 2012Preparation of Nafion 117™-SnO2 Composite Membranes using an Ion-Exchange Methodcitations
- 2010Preparation of Nafion 117™-SnO2 Composite Membranes using an Ion-Exchange Method
- 2010Fremstilling af Nafion 117™-SnO 2 kompositmembraner ved brug af en ionbytningsmetode ; Preparation of Nafion 117™-SnO 2 Composite Membranes using an Ion-Exchange Method
Places of action
Organizations | Location | People |
---|
article
Synthesis and Structural Characterization of a Pure ZnAl 4 (OH) 12 (SO 4 )·2.6H 2 O Layered Double Hydroxide
Abstract
<p>The phase purity of a series of ZnAl4(OH)12SO4· nH2O layered double hydroxides (ZnAl4-LDH) obtained from a reaction of bayerite (Al(OH)3) with an excess of zinc(II) sulfate under hydrothermal conditions was investigated as a function of the reaction temperature, the duration of the hydrothermal treatment, and the zinc(II) concentration. The product quality, i.e., crystalline impurities, Al impurities, and bulk Zn:Al ratio, were assessed by powder X-ray diffraction (PXRD),27Al MAS NMR, and elemental analysis. Structural characterization of a stoichiometric ZnAl4-LDH (120 °C, 9 days, and 2.8 M Zn(II)) showed a well-defined structure of the metal ion layer as evidenced by a single, well-defined Zn environment: i.e., no Zn substitution on the Al sites according to Zn k-edge EXAFS and PXRD. Furthermore, nearly all of the 12 different1H atoms in the -OH groups and 427Al resonances could be assigned using1H,27Al NMR correlation experiments recorded with ultrafast MAS. The interlayer water content is variable on the basis of thermogravimetric analysis and changes in the1H MAS NMR spectra with temperature. A composition of ZnAl4(OH)12(SO4)·2.6H2O was obtained from a combination of these techniques and confirmed that ZnAl4-LDH is isostructural with the mineral nickelalumite (NiAl4(OH)12SO4·3H2O).</p>